References
[1] Blasius, H. “Grenzschichten in Flussigkeiten mit kleiner Reibung”, Z. Angew. Math. Physik, 56, pp. 1-37 (1908).
[2] Sakiadis, B.C. “Boundary layer behavior on continuous solid surfaces: the boundary layer on a continuous flat surface”, AIChE J., 7, pp. 221-225 (1961).
[3] Pop, H. and Watanabe, W. “The effects of suction or injection in boundary layer flow and heat transfer on a continuous moving surface”, Technis. Mech., 13, pp. 49-54 (1992).
[4] Ishak, A., Yacob, N.A., Bachok, N. “Radiation effects on the thermal boundary layer flow over a moving plate with convective boundary condition”, Meccanica, 46, pp. 795-801 (2011).
[5] Yao, S., Fang, T. and Zhong, Y. “Heat transfer of a generalized stretching/shrinking wall problem with convective boundary conditions”, Commun. Nonlinear Sci. Numer. Simulat., 16, pp. 752-760 (2011).
[6] Cortell, R. “Fluid flow and radiative nonlinear heat transfer over a stretching sheet”, J. King Saud Uni.-Sci., 26, pp. 161-167 (2014).
[7] Khan, S.I., Khan, U., Ahmed, N. et al. “Effects of viscous dissipation and convective boundary conditions on Blasius and Sakiadis problems for Casson fluid”, Natl. Acad. Sci. Lett., 38, pp. 247-250 (2015).
[8] Olanrewaju, P.O., Gbadeyan, J.A., Agboola, O.O. et al. “Radiation and viscous dissipation effects for the Blasius and Sakiadis flows with a convective surface boundary condition”, Int. J. Adv. Sci. Tech., 2, pp. 102-115 (2011).
[9] Sheikholeslami, M. “New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media”, Comput. Methods Appl. Mech. Eng., 344, pp. 319-333 (2019).
[10] Sheikholeslami, M. “Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method”, Comput. Methods Appl. Mech. Eng., 344, pp. 306-318 (2019).
[11] Hsiao, K. “Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet”, Appl. Thermal Eng., 98, pp. 850-861 (2016).
[12] Hsiao, K. “Combined electrical MHD heat transfer thermal extrusion system using Maxwell fluid with radiative and viscous dissipation effects”, Appl. Thermal Eng., 112, pp. 1281-1288 (2017).
[13] Li, B., Zhang, W., Zhu, L. et al. “On mixed convection of two immiscible layers with a layer of non-Newtonian nanofluid in a vertical channel”, Powder Tech., 310, pp. 351-358 (2017).
[14] Si, X., Li, H., Zheng, L. et al. “A mixed convection flow and heat transfer of pseudo-plastic power law nanofluids past a stretching vertical plate”, Int. J. Heat Mass Transf., 105, pp. 350-358 (2017).
[15] Sheikholeslami, M. “Influence of magnetic field on nanofluid free convection in an open porous cavity by means of Lattice Boltzmann method”, J. Mol. Liq., 234, pp. 364-374 (2017).
[16] Zhu, J., Wang, S., Zheng, L. et al. “Heat transfer of nanofluids considering nanoparticle migration and second-order slip velocity”, Appl. Math. Mech., 38, pp. 125-136 (2017).
[17] Abbasi, F.M., Hayat, T., Shehzad, S.A. et al. “Impact of Cattaneo-Christov heat flux on flow of two-types viscoelastic fluid in Darcy-Forchheimer porous medium”, Int. J. Numer. Methods Heat Fluid Flow, 27, pp. 1955-1966 (2017).
[18] Kumari, M. and Nath, G. “MHD boundary-layer flow of a non-Newtonian fluid over a continuously moving surface with a parallel free stream”, Acta Mech., 146, pp. 139-150 (2001).
[19] Akbar, N.S., Nadeem, S., Haq, R.U. et al. “Radiation effects on MHD stagnation point flow of nano fluid towards a stretching surface with convective boundary condition”, Chin. J. Aeronaut., 26, pp. 1389-1397 (2013).
[20] Devi, S.P.A. and Suriyakumar, P. “Effect of magnetic field on Blasius and Sakiadis flow of nanofluids past an inclined plate”, J. Taibah Uni. Sci., 11, pp. 1275-1288 (2017).
[21] Isa, S.S.P.M., Arifin, N.M., Nazar, R. et al. “The effect of convective boundary condition on MHD mixed convection boundary layer flow over an exponentially stretching vertical sheet”, J. Phys.: Conf. Series, 949, pp. 1-14 (2017).
[22] Hamad, M.A.A., Uddin, M.J., Ismail, A.I. M. “Radiation effects on heat and mass transfer in MHD stagnation-point flow over a permeable flat plate with thermal convective surface boundary condition, temperature dependent viscosity and thermal conductivity”, Nuclear Eng. Design, 242, pp. 194-200 (2012).
[23]
Ferdows, M.,
Uddin, M.J. and
Afify, A.A. “Scaling group transformation for MHD boundary layer free convective heat and mass transfer flow past a convectively heated nonlinear radiating stretching sheet”,
Int. J. Heat Mass Transf., 56, pp. 181-187 (2013).
[24] Ullah, H., Islam, S., Khan, I. et al. “MHD boundary layer flow of an incompressible upper convected Maxwell fluid by optimal homotopy asymptotic method”, Sci. Iran., 24, pp. 202-210 (2017).
[25] Khan, M.I., Waqas, M., Hayat, T. et al. “A comparative study of Casson fluid with homogeneous-heterogeneous reactions”, J. Coll. Inter. Sci., 498, pp. 85-90 (2017).
[26] Ramli, N., Ahmad, S. and Pop, I. “MHD forced convection flow and heat transfer of ferro fluids over a moving at plate with uniform heat flux and second-order slip effects”, Sci. Iran., 25, pp.2186-2197 (2018).
[27] Kumar, S.G., Varma, S.V.K., Kumar, R.V.M.S.S.K. et al. “Three-dimensional hydromagnetic convective flow of chemically reactive Williamson fluid with non-uniform heat absorption and generation”, Int. J. Chem. Reac. Eng., 17, Article ID 20180118 (2019).
[28] Hussain, S.M., Jain, J., Seth, G.S. et al. “Effect of thermal radiation on magneto-nanofluids free convective flow over an accelerated moving ramped temperature plate”, Sci. Iran., 25, pp. 1243-1257 (2018).
[29] Abbasi, F.M., Shanakhat, I. and Shehzad, S.A. “Entropy generation analysis in peristalsis of nanofluid with Ohmic heating and Hall effects”, Phys. Scrip., 94, Article ID 025001 (2019).
[30] Wang, J., Muhammad, R., Khan, M.I. et al. “Entropy optimized MHD nanomaterial flow subject to variable thicked surface”, Comput. Methods Programs Biomed., 189, Article ID 105311 (2020).
[31] Khan, M.I., Alzahrani, F. and Hobiny, A. “Heat transport and nonlinear mixed convective nanomaterial slip flow of Walter-B fluid containing gyrotactic microorganisms”, Alex. Eng. J., 59, pp. 1761-1769 (2020).
[32] Abbas, S.Z., Khan, M.I., Kadry, S. et al. “Fully developed entropy optimized second order velocity slip MHD nanofluid flow with activation energy”, Comput. Methods Programs Biomed., 190, Article ID 105362 (2020).
[33] Grubka, L.J. and Bobba, K.M. “Heat transfer characteristics of a continuous, stretching surface with variable temperature”, J. Heat Transf., 107, pp. 248-250 (1985).
[34] Ali, M.E. “Heat transfer characteristics of a continuous stretching surface”, Warme and Stoffubertragung, 29, pp. 227-234 (1994).
[35] Ishak, A., Nazar, R. and Pop, I. “Boundary layer flow and heat transfer over an unsteady stretching vertical surface”, Meccanica, 44, 369-375 (2009).