Damage Propagation Prediction of Adhesion Failure in Composite T-joint Structure and Improvement using PZT Patch

Document Type : Article


1 Department of Mechanical Engineering, CAPGS, BPUT, Rourkela, Odisha, India

2 Department of Mechanical Engineering, National Institute of Technology, Rourkela, Odisha, India


In this paper, a three dimensional finite element simulation model has been developed for the prediction, propagation and improvement of adhesion failure in an adhesively bonded laminated T-joint structure using the smart piezoelectric material. Initially, the three-dimensional stresses (normal and shear) and failure locations in the composite T-joint (all the layers of the web and flange) are evaluated. At the identified failure location, virtual crack closure technique (VCCT) of fracture mechanics has been employed to compute the strain energy release rate (SERR) values for different pre-embedded adhesion failure lengths. The developed coupling analysis model is used to evaluate the SERR responses for the laminated composite T-joint with single/multiple piezoelectric layers. The efficacy and improved performance (resistance to adhesion failure) of the laminated smart T-joint structure have been analysed in details by considering the different influencing parameters i.e. orientation schemes, material types, piezoelectric layers, thickness, number of layers of the laminate.


1.          Asadijafari, M. H., Zarastvand, M. R., and Talebitooti, R., “The effect of considering Pasternak elastic foundation on acoustic insulation of the finite doubly curved composite structures”, Compos. Struct., 256 (2021).
2.        Darvish Gohari, H., Zarastvand, M. R., and Talebitooti, R., “Acoustic performance prediction of a multilayered finite cylinder equipped with porous foam media”, JVC/Journal Vib. Control, 26(11–12), pp. 899–912 (2020).
3.        Talebitooti, R., Zarastvand, M., and Darvishgohari, H., “Multi-objective optimization approach on diffuse sound transmission through poroelastic composite sandwich structure”, J. Sandw. Struct. Mater. (2019).
4.        Zarastvand, M. R., Ghassabi, M., and Talebitooti, R., “A Review Approach for Sound Propagation Prediction of Plate Constructions”, Arch. Comput. Methods Eng. (2020).
5.        Ghassabi, M., Talebitooti, R., and Zarastvand, M. R., “State vector computational technique for three-dimensional acoustic sound propagation through doubly curved thick structure”, Comput. Methods Appl. Mech. Eng., 352, pp. 324–344 (2019).
6.        Talebitooti, R., Zarastvand, M. R., and Gohari, H. D., “The influence of boundaries on sound insulation of the multilayered aerospace poroelastic composite structure”, Aerosp. Sci. Technol., 80, pp. 452–471 (2018).
7.        Talebitooti, R., Zarastvand, M., and Rouhani, A. S., “Investigating hyperbolic shear deformation theory on vibroacoustic behavior of the infinite functionally graded thick plate”, Lat. Am. J. Solids Struct., 16(1), (2019).
8.        Zarastvand, M. R., Ghassabi, M., and Talebitooti, R., “Acoustic Insulation Characteristics of Shell Structures: A Review”, Arch. Comput. Methods Eng. (2019).
9.        Ghassabi, M., Zarastvand, M. R., and Talebitooti, R., “Investigation of state vector computational solution on modeling of wave propagation through functionally graded nanocomposite doubly curved thick structures”, Eng. Comput. (2019).
10.      Talebitooti, R. and Zarastvand, M. R., “Vibroacoustic behavior of orthotropic aerospace composite structure in the subsonic flow considering the Third order Shear Deformation Theory”, Aerosp. Sci. Technol., 75, pp. 227–236 (2018).
11.      Talebitooti, R., Johari, V., and Zarastvand, M., “Wave transmission across laminated composite plate in the subsonic flow investigating two-variable refined plate theory”, Lat. Am. J. Solids Struct., 15(5), (2018).
12.      Diamanti, K. and Soutis, C., “Structural health monitoring techniques for aircraft composite structures”, Prog. Aerosp. Sci., 46(8), pp. 342–352 (2010).
13.      Pagano, N. J. and schoeppner, G. A., “Delamination of Polymer Matrix Composites: Problems and Assessment”, Compr. Compos. Mater., pp. 433–528 (2000).
14.      Li, D. and Qing, G., “Free vibration analysis of composite laminates with delamination based on state space theory”, Mech. Adv. Mater. Struct., 21(5), pp. 402–411 (2014).
15.      Imran, M., Khan, R., and Badshah, S., “Experimental, numerical and finite element vibration analysis of delaminated composite plate”, Sci. Iran. (2019).
16.      Jafari-Talookolaei, R. A., Ebrahimzade, N., Rashidi-Juybari, S., and Teimoori, K., “Bending and vibration analysis of delaminated Bernoulli-Euler microbeams using the modified couple stress”, Sci. Iran., 25(2B), pp. 675–688 (2018).
17.      Erturk, A. and Inman, D. J., “On mechanical modeling of cantilevered piezoelectric vibration energy harvesters”, J. Intell. Mater. Syst. Struct., 19(11), pp. 1311–1325 (2008).
18.      Lee, J., “Free vibration analysis of delaminated composite beams”, Comput. Struct., 74(2), pp. 121–129 (2000).
19.      Tan, P. and Tong, L., “Delamination detection of composite beams using piezoelectric sensors with evenly distributed electrode strips”, J. Compos. Mater., 38(4), pp. 321–352 (2004).
20.      Senthil, K., Arockiarajan, A., Palaninathan, R., Santhosh, B., and Usha, K. M., “Defects in composite structures: Its effects and prediction methods - A comprehensive review”, Compos. Struct., 106, pp. 139–149 (2013).
21.      Raja, S., Prathima Adya, H. P., and Viswanath, S., “Analysis of piezoelectric composite beams and plates with multiple delaminations”, Struct. Heal. Monit., 5(3), pp. 255–266 (2006).
22.      Tang, H. Y., Winkelmann, C., Lestari, W., and La Saponara, V., “Composite structural health monitoring through use of embedded PZT sensors”, J. Intell. Mater. Syst. Struct., 22(8), pp. 739–755 (2011).
23.      Patange, S. S. R., Raja, S., Vijayakumar, M. P., and Ranganath, V. R., “Study on low frequency energy harvesting system in laminated aluminum beam structures with delamination”, J. Mech. Sci. Technol., 32(5), pp. 1985–1993 (2018).
24.      Vishwas, M., Joladarashi, S., and Kulkarni, S. M., “Comparative study of damage behavior of synthetic and natural ber-reinforced brittle composite and natural ber-reinforced exible composite subjected to low-velocity impact”, Sci. Iran., 27(1), pp. 341–349 (2020).
25.      Tan, P. and Tong, L., “Experimental and analytical identification of a delamination using isolated PZT sensor and actuator patches”, J. Compos. Mater., 41(4), pp. 477–492 (2007).
26.      Venkata Rao, K., Raja, S., and Munikenche Gowda, T., “Finite element modeling and bending analysis of piezoelectric sandwich beam with debonded actuators”, Smart Struct. Syst., 13(1), pp. 55–80 (2014).
27.      Bendenia, N., Zidour, M., Bousahla, A. A., Bourada, F., Tounsi, A., Benrahou, K. H., Bedia, E. A. A., Mahmoud, S. R., and Tounsi., A., “Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation”, Comput. Concr., 26(3), pp. 213–226 (2020).
28.      Othmane, A., Kada, D., Anis, B. A., Fouad, B., Abdeldjebbar, T., Halim, B. K., S.R., M., E.A., A. B., and Abdelouahed, T., “A generalized 4-unknown refined theory for bending and free vibration analysis of laminated composite and sandwich plates and shells”, Comput. Concr., 26(2), pp. 185–201 (2020).
29.      Draiche, K., Bousahla, A. A., Tounsi, A., Alwabli, A. S., Tounsi, A., and Mahmoud, S. R., “Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory”, Comput. Concr., 24(4), pp. 369–378 (2019).
30.      Belbachir, Nasrine, Draich, K., Tounsi, A. A. A. B. M. B. A., Mohammadimehr, M., Belbachir, N., Draich, K., Bousahla, A. A., Bourada, M., Tounsi, A. A. A. B. M. B. A., and Mohammadimehr, M., “Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings”, Steel Compos. Struct., 33(1), pp. 81–92 (2019).
31.      Sahla, M., Saidi, H., Draiche, K., Bousahla, A. A., Bourada, F., and Tounsi, A., “Free vibration analysis of angle-ply laminated composite and soft core sandwich plates”, Steel Compos. Struct., 33(5), pp. 663–679 (2019).
32.      Zine, A., Bousahla, A. A., Bourada, F., Benrahou, K. H., Tounsi, A., Bedia, E. A. A., Mahmoud, S. R., and Tounsi, A., “Bending analysis of functionally graded porous plates via a refined shear deformation theory”, Comput. Concr., 26(2), pp. 63–74 (2020).
33.      Bourada, F., Bousahla, A. A., Tounsi, A., Adda Bedia, E. A., Mahmoud, S. R., Benrahou, K. H., and Tounsi, A., “Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation”, Comput. Concr., 25(6), pp. 485–495 (2020).
34.      Chikr, S. C., Kaci, A., Bousahla, A. A., Bourada, F., Tounsi, A. A., Bedia, E. A., Mahmoud, S. R., Benrahou, K. H., and Tounsi, A. A., “A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin’s approach”, Geomech. Eng., 21(5), pp. 471–487 (2020).
35.      Yan, X., Courtney, C. R. P., Bowen, C. R., Gathercole, N., Wen, T., Jia, Y., and Shi, Y., “In situ fabrication of carbon fibre–reinforced polymer composites with embedded piezoelectrics for inspection and energy harvesting applications”, J. Intell. Mater. Syst. Struct., 31(16), pp. 1910–1919 (2020).
36.      Kolahchi, R., Hosseini, H., and Esmailpour, M., “Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories”, Compos. Struct., 157, pp. 174–186 (2016).
37.      Ghorbanpour Arani, A., Jamali, M., Mosayyebi, M., and Kolahchi, R., “Wave propagation in FG-CNT-reinforced piezoelectric composite micro plates using viscoelastic quasi-3D sinusoidal shear deformation theory”, Compos. Part B Eng., 95, pp. 209–224 (2016).
38.      Motezaker, M., Jamali, M., and Kolahchi, R., “Application of differential cubature method for nonlocal vibration, buckling and bending response of annular nanoplates integrated by piezoelectric layers based on surface-higher order nonlocal-piezoelasticity theory”, J. Comput. Appl. Math., 369 (2020).
39.      Ghorbanpour-Arani, A. H., Rastgoo, A., Sharafi, M. M., Kolahchi, R., and Ghorbanpour Arani, A., “Nonlocal viscoelasticity based vibration of double viscoelastic piezoelectric nanobeam systems”, Meccanica, 51(1), pp. 25–40 (2016).
40.      Kolahchi, R., Keshtegar, B., and Fakhar, M. H., “Optimization of dynamic buckling for sandwich nanocomposite plates with sensor and actuator layer based on sinusoidal-visco-piezoelasticity theories using Grey Wolf algorithm”, J. Sandw. Struct. Mater., 22(1), pp. 3–27 (2020).
41.      Hajmohammad, M. H., Zarei, M. S., Kolahchi, R., and Karami, H., “Visco-piezoelasticity-zigzag theories for blast response of porous beams covered by graphene platelet-reinforced piezoelectric layers”, J. Sandw. Struct. Mater., p. 109963621983917 (2019).
42.      Cheuk, P. T. and Tong, L., “Failure of adhesive bonded composite lap shear joints with embedded precrack”, Compos. Sci. Technol., 62(7–8), pp. 1079–1095 (2002).
43.      Hahn HT, T. S., “Introduction to Composite Materials”, Mech. Compos. Mater., pp. 1–53 (2018).
44.      G. Irwin, “Analysis of stresses and strains near the end of a crack traversing a plate”, J. Appl. Mech., 24, pp. 361–364 (1957).
45.      E.F, R. and M.F, K., “A finite element calculation of stress intensity factors by a modified crack closure integral”, Eng. Fract. Mech., 9(4), pp. 931–938 (1977).
46.      Li, D. H., “Delamination and transverse crack growth prediction for laminated composite plates and shells”, Comput. Struct., 177, pp. 39–55 (2016).
47.      Jha, B. K. and Ray, M. C., “Benchmark analysis of piezoelectric bimorph energy harvesters composed of laminated composite beam substrates”, Int. J. Mech. Mater. Des., 15(4), pp. 739–755 (2019).
48.      Isaac M. Daniel, O. I.-2nd, “Engineering mechanics of composite materials”, Mater. Des., 17(2), pp. 114 (2006).
49.      Hwang, W. S. and Park, H. C., “Finite element modeling of piezoelectric sensors and actuators”, AIAA J., 31(5), pp. 930–937 (1993).
50.      Zhang, T. Y., Zhao, M., and Tong, P., “Fracture of piezoelectric ceramics”, Adv. Appl. Mech., 38(C), pp. 147–289 (2002).