References 1. Kojima, A., Teshima, K., Shirai, Y., et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells", J. Am. Chem. Soc., 131, pp. 6050{6051 (2009). 2. Hao, F., Stoumpos, C.C., Cao, D.H., et al. Lead-free solid-state organic-inorganic halide perovskite solar cells", Nat. Photon., 8, pp. 489{494 (2014). 3. Futscher, M.H., Lee, J.M., McGovern, L., et al. Quanti _cation of ion migration in CH3NH3PbI3 perovskite solar cells by transient capacitance measurements", Mater. Horiz., 6, pp. 1497{1503 (2019). 4. Kim, T.W. and Uchida, S. Role of FIB and TEM in organo-halide perovskite solar cell observations", The Hitachi Scienti_c Instrument news, 13, pp. 1{7 (2019). 5. Luo, S. and Daoud, W. Crystal structure formation of CH3NH3PbI3xClx perovskite", Materials, 9(3), pp. 123{135 (2016). 6. Zhu, Y., Shu, L., and Fan, Z. Recent progress on semi-transparent perovskite solar cell for buildingintegrated photovoltaics", Chem. Res. Chin. Univ., 36, pp. 366{376 (2020). 7. Saliba, M., Matsui, T., Domanski, K., et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance", Science, 354, pp. 206{209 (2016). O. Malekan et al./Scientia Iranica, Transactions F: Nanotechnology 28 (2021) 1939{1952 1951 8. Fu, H. Review of lead-free halide perovskites as light-absorbers for photovoltaic applications: From materials to solar cells", Solar Energy Materials and Solar Cells, 193, pp. 107{132 (2019). 9. Luo, J., Xia, J., Yang, H., et al. Novel approach toward hole-transporting layer doped by hydrophobic Lewis acid through in_ltrated di_usion doping for perovskite solar cells", Nano Energy, 70, p. 104509 (2020). 10. Xiong, C., Sun, J. , Zhang, J., et al. Revelating mechanism of light ideality factor in organic solar cells", Organic Electronics, 78, p. 105559 (2020). 11. Deng, X., Cao, Z., Yuan, Y., et al. Coordination modulated crystallization and defect passivation in high quality perovskite _lm for e_cient solar cells", Coordination Chemistry Reviews, 420, p. 213408 (2020). 12. Gebremichael, B., Alemu, G., and Tessema, G. Conductivity of CH3NH3PbI3 thin _lm perovskite stored in ambient atmosphere", Physica B: Condensed Matter, 514(1), pp. 85{88 (2017). 13. Liu, Q., Yang, Y.Q., Wang, X., et al. Highperformance UV-visible Photodetectors Based on CH3NH3PbI3xClx/ GaN Microwire Array Heterostructures", Journal of Alloys and Compounds, 864, p. 158710 (2021). 14. Correa-Baena, J., Saliba, M., Buonassisi, T., et al. Promises and challenges of perovskite solar cells", Science, 358(6364), pp. 739{744 (2017). 15. Hcu, H.Y., Vella, J.H., Myers, J.D., et al. Triplet exciton di_usion in platinum polyyne _lms", J. Phys. Chem. C., 118, pp. 24282{24289 (2014). 16. Zhou, G., Chu, W., and Prezhdo, O.V. Structural deformation controls charge losses in MAPbI3: Unsupervised machine learning of nonadiabatic molecular dynamics", ACS Energy Lett., 5(6), pp. 1930{1938 (2020). 17. Luo, S., Yo, P., Cai, G., et al. The inuence of chloride on interdi_usion method for perovskite solar cells", Materials Letters, 169, pp. 236{240 (2016). 18. Rothmann, M., Li, W., Zhu, Y., et al. Direct observation of intrinsic twin domains in tetragonal CH3NH3PbI3", Nat Commun, 8, pp. 14547{14554 (2017). 19. Uzu, H., Ichikawa, H., Hino, M., et al. High e_ciency solar cells combining a perovskite and a silicon heterojunction solar cells via an optical splitting system", Appl. Phys. Lett., 106, p. 013506 (2015). 20. Zhao, D., Yu, Y., Wang, C., et al. Low-bandgap mixed tin-lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells", Nature Energy, 2, p. 17018 (2017). 21. Wang, D.L., Cui, H.J., Hou, G.J., et al. Highly e_cient light management for perovskite solar cells", Sci. Rep., 6, p. 18922 (2016). 22. Jeon, N.J., Noh, J.H., Yang, W.S., et al. Compositional engineering of perovskite materials for highperformance solar cells", Nature, 517, pp. 476{480 (2014). 23. Mohd Yuso_, A.R.B. and Nazeeruddin, M.K. Organohalide lead perovskites for photovoltaic applications", J. Phys. Chem. Lett., 7(5), pp. 851{866 (2016). 24. Dualeh, A., T_etreault, N., Moehl T., et al. E_ect of annealing temperature on _lm morphology of organicinorganic hybrid pervoskite solid-state solar cells", Adv. Funct. Mater., 24, pp. 3250{3258 (2014). 25. Minemotoa, T. and Murata, M. Impact of work function of back contact of perovskite solar cells without hole transport material analyzed by device simulation", Curr. Appl Phys., 14, pp. 1428{1433 (2014). 26. Shahbazi, M. andWan, H. Progress in research on the stability of organometal perovskite solar cells", Solar Energy, 123, pp. 74{87 (2016). 27. Smith, I.C., Hoke, E.T., Solis-Ibarra, D., et al. A layered hybrid prrovskite solar-cell absorber with enhanced moisture stability", Chem. Int. Ed. Engl., 53(42), pp. 11232{11235 (2014). 28. Hwang, B. and Lee, J.S. Hybrid organic-inorganic perovskite memory with long-term stability in air", Sci. Rep., 7, p. 673 (2017). 29. Yin, W.J., Yang, J.H., Kang, J., et al. Halide perovskite materials for solar cells: a theoretical review", J. Mater. Chem. A, 3, pp. 8926{8942 (2015). 30. Burschka, J., Pellet, N., Moon, S.J., et al. Sequential deposition as a route to high-performance perovskitesensitized solar cells", Nature, 499, pp. 316{319 (2013).