The study of the morphology and structural, optical, and J-V characterizations of (CH3NH3PbI3) perovskite photovoltaic cells in ambient atmosphere

Document Type : Article

Authors

School of Physics, Damghan University, Damghan, Iran

10.24200/sci.2021.55718.4372

Abstract

In this paper, the synthesis processes of perovskite active films of CH3NH3PbI3 (MAPbI3) have been studied for perovskite hybrid solar cells by spin and dip coating in ambient atmosphere, and without glove box to reduce production cost for technological applications. The morphology and structural, electrical and optical properties of perovskite films have been investigated by X-ray Diffraction (XRD), Field-Emission Scanning Electron Microscopes (FE-SEM), Atomic Force Microscopes (AFM) and Ultraviolet–visible spectroscopy (UV-Vis). A precursor solution of lead Iodide (PbI2) with Dimethylformamide (DMF) solvent by spin coating at two stages (a) R=4500 rpm and (b) R=6000 rpm, and methyl ammonium iodide (CH3NH3I) with isopropanol solvent by dip coating, have been prepared for active perovskite layer (CH3NH3PbI3).

Keywords


References         1. Kojima, A., Teshima, K., Shirai, Y., et al.         Organometal halide perovskites as visible-light sensitizers         for photovoltaic cells", J. Am. Chem. Soc., 131,         pp. 6050{6051 (2009).         2. Hao, F., Stoumpos, C.C., Cao, D.H., et al. Lead-free         solid-state organic-inorganic halide perovskite solar         cells", Nat. Photon., 8, pp. 489{494 (2014).         3. Futscher, M.H., Lee, J.M., McGovern, L., et al. Quanti         _cation of ion migration in CH3NH3PbI3 perovskite         solar cells by transient capacitance measurements",         Mater. Horiz., 6, pp. 1497{1503 (2019).         4. Kim, T.W. and Uchida, S. Role of FIB and TEM in         organo-halide perovskite solar cell observations", The         Hitachi Scienti_c Instrument news, 13, pp. 1{7 (2019).         5. Luo, S. and Daoud, W. Crystal structure formation of         CH3NH3PbI3􀀀xClx perovskite", Materials, 9(3), pp.         123{135 (2016).         6. Zhu, Y., Shu, L., and Fan, Z. Recent progress on         semi-transparent perovskite solar cell for buildingintegrated         photovoltaics", Chem. Res. Chin. Univ., 36,         pp. 366{376 (2020).         7. Saliba, M., Matsui, T., Domanski, K., et al. Incorporation         of rubidium cations into perovskite solar cells         improves photovoltaic performance", Science, 354, pp.         206{209 (2016).         O. Malekan et al./Scientia Iranica, Transactions F: Nanotechnology 28 (2021) 1939{1952 1951         8. Fu, H. Review of lead-free halide perovskites as         light-absorbers for photovoltaic applications: From         materials to solar cells", Solar Energy Materials and         Solar Cells, 193, pp. 107{132 (2019).         9. Luo, J., Xia, J., Yang, H., et al. Novel approach         toward hole-transporting layer doped by hydrophobic         Lewis acid through in_ltrated di_usion doping for         perovskite solar cells", Nano Energy, 70, p. 104509         (2020).         10. Xiong, C., Sun, J. , Zhang, J., et al. Revelating         mechanism of light ideality factor in organic solar         cells", Organic Electronics, 78, p. 105559 (2020).         11. Deng, X., Cao, Z., Yuan, Y., et al. Coordination modulated         crystallization and defect passivation in high         quality perovskite _lm for e_cient solar cells", Coordination         Chemistry Reviews, 420, p. 213408 (2020).         12. Gebremichael, B., Alemu, G., and Tessema, G. Conductivity         of CH3NH3PbI3 thin _lm perovskite stored         in ambient atmosphere", Physica B: Condensed Matter,         514(1), pp. 85{88 (2017).         13. Liu, Q., Yang, Y.Q., Wang, X., et al. Highperformance         UV-visible Photodetectors Based on         CH3NH3PbI3􀀀xClx/ GaN Microwire Array Heterostructures",         Journal of Alloys and Compounds,         864, p. 158710 (2021).         14. Correa-Baena, J., Saliba, M., Buonassisi, T., et al.         Promises and challenges of perovskite solar cells",         Science, 358(6364), pp. 739{744 (2017).         15. Hcu, H.Y., Vella, J.H., Myers, J.D., et al. Triplet         exciton di_usion in platinum polyyne _lms", J. Phys.         Chem. C., 118, pp. 24282{24289 (2014).         16. Zhou, G., Chu, W., and Prezhdo, O.V. Structural         deformation controls charge losses in MAPbI3: Unsupervised         machine learning of nonadiabatic molecular         dynamics", ACS Energy Lett., 5(6), pp. 1930{1938         (2020).         17. Luo, S., Yo, P., Cai, G., et al. The inuence of chloride         on interdi_usion method for perovskite solar cells",         Materials Letters, 169, pp. 236{240 (2016).         18. Rothmann, M., Li, W., Zhu, Y., et al. Direct         observation of intrinsic twin domains in tetragonal         CH3NH3PbI3", Nat Commun, 8, pp. 14547{14554         (2017).         19. Uzu, H., Ichikawa, H., Hino, M., et al. High e_ciency         solar cells combining a perovskite and a silicon heterojunction         solar cells via an optical splitting system",         Appl. Phys. Lett., 106, p. 013506 (2015).         20. Zhao, D., Yu, Y., Wang, C., et al. Low-bandgap         mixed tin-lead iodide perovskite absorbers with long         carrier lifetimes for all-perovskite tandem solar cells",         Nature Energy, 2, p. 17018 (2017).         21. Wang, D.L., Cui, H.J., Hou, G.J., et al. Highly         e_cient light management for perovskite solar cells",         Sci. Rep., 6, p. 18922 (2016).         22. Jeon, N.J., Noh, J.H., Yang, W.S., et al. Compositional         engineering of perovskite materials for highperformance         solar cells", Nature, 517, pp. 476{480         (2014).         23. Mohd Yuso_, A.R.B. and Nazeeruddin, M.K.         Organohalide lead perovskites for photovoltaic applications",         J. Phys. Chem. Lett., 7(5), pp. 851{866         (2016).         24. Dualeh, A., T_etreault, N., Moehl T., et al. E_ect of         annealing temperature on _lm morphology of organicinorganic         hybrid pervoskite solid-state solar cells",         Adv. Funct. Mater., 24, pp. 3250{3258 (2014).         25. Minemotoa, T. and Murata, M. Impact of work         function of back contact of perovskite solar cells         without hole transport material analyzed by device         simulation", Curr. Appl Phys., 14, pp. 1428{1433         (2014).         26. Shahbazi, M. andWan, H. Progress in research on the         stability of organometal perovskite solar cells", Solar         Energy, 123, pp. 74{87 (2016).         27. Smith, I.C., Hoke, E.T., Solis-Ibarra, D., et al.         A layered hybrid prrovskite solar-cell absorber with         enhanced moisture stability", Chem. Int. Ed. Engl.,         53(42), pp. 11232{11235 (2014).         28. Hwang, B. and Lee, J.S. Hybrid organic-inorganic         perovskite memory with long-term stability in air",         Sci. Rep., 7, p. 673 (2017).         29. Yin, W.J., Yang, J.H., Kang, J., et al. Halide perovskite         materials for solar cells: a theoretical review",         J. Mater. Chem. A, 3, pp. 8926{8942 (2015).         30. Burschka, J., Pellet, N., Moon, S.J., et al. Sequential         deposition as a route to high-performance perovskitesensitized         solar cells", Nature, 499, pp. 316{319         (2013).