Application of TiO2/ZnFe2O4/glycine nanocatalyst to the treatment of methyl orange dye from aqueous solution: Impacts of dissolved mineral salts on dye removal efficiency

Document Type : Article


Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran



This study aimed to remove one of the frequently used dyes in textile industries, Methyl Orange, from pollutant water with TiO2/ZnFe2O4/Glycine nanocatalyst under UV irradiation. The TiO2/Glycine/ZnFe2O4 nanocatalyst was synthesized through the sol-gel method and characterized by XRD, XRF, FT-IR, UV-Visible DRS, BET, FE-SEM, and EDX analyses. Process factors, including initial dye concentration (10-30 ppm), nanocatalyst dosage (0.5-1.5 g/L), initial pH solution (3-11), and irradiation time (30-150 min), were investigated by central composite design. The removal efficiency of Methyl Orange was 80% under optimal conditions (dye concentration: 20 ppm, nanocatalyst dosage: 1 g/L, irradiation time: 120 min, and pH=6.5). The effects of mineral salts such as NaHCO3, NaCl, Na2SO4, KCl, MgSO4, and CaCl2 with the concentrations of 50-800 ppm on the dye removal efficiency were examined under the optimal conditions. Low concentrations of NaCl, KCl, and CaCl2 had adverse effects on MO removal efficiency, while the dye removal efficiency raised at their high levels (RNaCl.800=74.52%). An increase in concentrations of MgSO4 and Na2SO4 led to deactivation effects on the dye removal efficiency and reaction rate constant (MgSO4 deactivation: 36%). There was an upward trend in the pollutant removal efficiency and reaction rate constant using NaHCO3 (RNaHCO3.800=82.4% and kNaHCO3.800=20.84 day-1).


References  1. Das, T.R. and Sharma, P.K. Bimetal oxide decorated  graphene oxide (Gd2O3/Bi2O3@GO) nanocomposite  as an excellent adsorbent in the removal of methyl  orange dye", Materials Science in Semiconductor Processing,  105, p. 104721 (2020).  2. Fradj, A.B., Boubakri, A., Ha_ane, A., and Hamouda,  S.B. Removal of azoic dyes from aqueous solutions by  chitosan enhanced ultra_ltration", Results in Chemistry,  2, p. 100017 (2020).  3. Bhatti, M.A., Shah, A.A., Almani, K.F., Tahira, A.,  Chalangar, S.E., dad Chandio, A., Nur, O., Willander,  M., and Ibupoto, Z.H. E_cient photo catalysts based  on silver doped ZnO nanorods for the photo degradation  of methyl orange", Ceramics International,  45(17), Part B, pp. 23289{23297 (2019).  4. Zhu, Z., Xiang, M., Li, P., Shan, L., and Zhang, P.  Surfactant-modi_ed three-dimensional layered double  hydroxide for the removal of methyl orange and  rhodamine B: Extended investigations in binary dye  systems", Journal of Solid State Chemistry, 288, p.  121448 (2020).  M. Hajiali et al./Scientia Iranica, Transactions C: Chemistry and ... 28 (2021) 1464{1477 1475  5. Gautam, P.K., Singh, A., Misra, K., Sahoo, A.K., and  Samanta, S.K. Synthesis and applications of biogenic  nanomaterials in drinking and wastewater treatment",  Journal of Environmental Management, 231, pp. 734{  748 (2019).  6. Gautam, P.K., Shivapriya, P.M., Banerjee, S., Sahoo,  A.K., and Samanta, S.K. Biogenic fabrication of iron  nanoadsorbents from mixed waste biomass for aqueous  phase removal of alizarin red S and tartrazine: Kinetics,  isotherm, and thermodynamic investigation", Environmental  Progress and Sustainable Energy, 39(2),  p. e13326 (2020).  7. Upadhyay, G.K., Rajput, J.K., Pathak, T.K., Pal,  P.K., and Purohit, L.P. Tailoring and optimization  of hybrid ZnO:TiO2:CdO nanomaterials for advance  oxidation process under visible light", Applied Surface  Science, 509, p. 145326 (2020).  8. Arshad, R., Bokhari, T.H., Javed, T., Bhatti, I.A.,  Rasheed, S., Iqbal, M., Nazir, A., Naz, S., Khan, M.I.,  Khosa, M.K.K., and Zia-ur-Rehman, M. Degradation  product distribution of reactive red-147 dye treated by  UV/H2O2/TiO2 advanced oxidation process", Journal  of Materials Research and Technology, 9(3), pp. 3168{  3178 (2020).  9. Nguyen, C.H., Tran, M.L., Van Tran, T.T., and Juang,  R.S. Enhanced removal of various dyes from aqueous  solutions by UV and simulated solar photocatalysis  over TiO2/ZnO/rGO composites", Separation and Puri  _cation Technology, 232, p. 115962 (2020).  10. Dutta, V., Sharma, S., Raizada, P., Hosseini{  Bandegharaei, A., Kaushal, J., and Singh, P. Fabrication  of visible light active BiFeO3/CuS/SiO2 Z{scheme  photocatalyst for e_cient dye degradation", Materials  Letters, 270, p. 127693 (2020).  11. Taghvaei, H., Farhadian, M., Davari, N., and Maazi,  S. Preparation, characterization and photocatalytic  degradation of methylene blue by Fe3+ doped TiO2  supported on natural zeolite using response surface  methodology", Advances in Environmental Technology,  3(4), pp. 205{216 (2017).  12. Gautam, P.K., Shivalkar, S., and Samanta, S.K.  Environmentally benign synthesis of nanocatalysts:  Recent advancements and applications", Handbook of  Nanomaterials and Nanocomposites for Energy and  Environmental Applications, O.V. Kharissova, L.M.T.  Mart_Inez and B.I. Kharisov, Eds., pp. 1{19, Cham:  Springer International Publishing (2020).  13. Davari, N., Farhadian, M., Nazar, A.R.S., and Homayoonfal,  M. Degradation of diphenhydramine by the  photocatalysts of ZnO/Fe2O3 and TiO2/Fe2O3 based  on clinoptilolite: Structural and operational comparison",  Journal of Environmental Chemical Engineering,  5(6), pp. 5707{5720 (2017).  14. Kaiba, A., Ouerghi, O., Geesi, M.H., Elsanousi, A.,  Belkacem, A., Dehbi, O., Alharthi, A.I., Alotaibi,  M.A., and Riadi, Y. Characterization and catalytic  performance of Ni-Doped TiO2 as a potential heterogeneous  nanocatalyst for the preparation of substituted  pyridopyrimidines", Journal of Molecular Structure,  1203, pp. 127376 (2020).  15. Zou, L., Wang, H., Jiang, X., Yuan, G., and Wang,  X. Enhanced photocatalytic e_ciency in degrading  organic dyes by coupling CdS nanowires with ZnFe2O4  nanoparticles", Solar Energy, 195, pp. 271{277 (2020).  16. Aram, M., Farhadian, M., Nazar, A.R.S., Tangestaninejad,  S., Eskandari, P., and Jeon, B.H.  Metronidazole and cephalexin degradation by using  of urea/TiO2/ZnFe2O4/clinoptiloite catalyst under  visible{light irradiation and ozone injection", Journal  of Molecular Liquids, 304, p. 112764 (2020).  17. Ai, J., Hu, L., Zhou, Z., Cheng, L., Liu, W., Su, K.,  Zhang, R., Chen, Z., and Li, W. Surfactant-free synthesis  of a novel octahedral ZnFe2O4/graphene composite  with high adsorption and good photocatalytic  activity for e_cient treatment of dye wastewater",  Ceramics International, 46(8), Part B, pp. 11786{  11798 (2020).  18. Choi, I.A., Kwak, D.H., Han, S.B., Park, J.Y., Park,  H.S., Ma, K.B., Kim, D.H., Won, J.E., and Park, K.W.  Doped porous carbon nanostructures as non{precious  metal catalysts prepared by amino acid glycine for  oxygen reduction reaction", Applied Catalysis B: Environmental,  211, pp. 235{244 (2017).  19. Moza_ari, M., Arani, M.E., and Amighian, J. The  e_ect of cation distribution on magnetization of  ZnFe2O4 nanoparticles", Journal of Magnetism and  Magnetic Materials, 322(21), pp. 3240{3244 (2010).  20. Zhu, X., Zhang, F., Wang, M., Ding, J., Sun, S.,  Bao, J., and Gao, C. Facile synthesis, structure  and visible light photocatalytic activity of recyclable  ZnFe2O4/TiO2", Applied Surface Science, 319, pp.  83{89 (2014).  21. Nguyen, T.B., Huang, C.P., and Doong, R.A.  Photocatalytic degradation of bisphenol A over a  ZnFe2O4/TiO2 nanocomposite under visible light",  Science of The Total Environment, 646, pp. 745{756  (2019).  22. Xu, Q., Feng, J., Li, L., Xiao, Q., and Wang, J. Hollow  ZnFe2O4/TiO2 composites: High{performance  and recyclable visible{light photocatalyst", Journal of  Alloys and Compounds, 641, pp. 110{118 (2015).  23. Meng, X., Zhuang, Y., Tang, H., and Lu, C. Hierarchical  structured ZnFe2O4@SiO2@TiO2 composite for  enhanced visible{light photocatalytic activity", Journal  of Alloys and Compounds, 761, pp. 15{23 (2018).  24. Zangeneh, H., Zinatizadeh, A.A., Zinadini, S., Feyzi,  M., Ra_ee, E., and Bahnemann, D.W. A novel L{  Histidine (C, N) codoped{TiO2{CdS nanocomposite  for e_cient visible photo{degradation of recalcitrant  compounds from wastewater", Journal of Hazardous  Materials, 369, pp. 384{397 (2019).  1476 M. Hajiali et al./Scientia Iranica, Transactions C: Chemistry and ... 28 (2021) 1464{1477  25. Nguyen, T.B. and Doong, R.A. Fabrication of  highly visible-light-responsive ZnFe2O4/TiO2 heterostructures  for the enhanced photocatalytic degradation  of organic dyes", RSC Advances, 6(105), pp.  103428{103437 (2016).  26. Davari, N., Farhadian, M., and Solaimany Nazar, A.R.  Synthesis and characterization of Fe2O3 doped ZnO  supported on clinoptilolite for photocatalytic degradation  of metronidazole", Environmental Technology, pp.  1{13 (2019).  27. Khaki, M.R.D., Shafeeyan, M.S., Raman, A.A.A., and  Daud, W.M.A.W. Evaluating the e_ciency of nanosized  Cu doped TiO2/ZnO photocatalyst under visible  light irradiation", Journal of Molecular Liquids, 258,  pp. 354{365 (2018).  28. Nguyen, C.H., Fu, C.C., and Juang, R.S. Degradation  of methylene blue and methyl orange by palladiumdoped  TiO2 photocatalysis for water reuse: E_ciency  and degradation pathways", Journal of Cleaner Production,  202, pp. 413{427 (2018).  29. Chen, H., Xue, C., Cui, D., Liu, M., Chen, Y.,  Li, Y., and Zhang, W. Co3O4-Ag photocatalysts  for the e_cient degradation of methyl orange", RSC  Advances, 10(26), pp. 15245{15251 (2020).  30. Mazhari, M.P., Hamadanian, M., Mehipour, M.,  and Jabbari, V. Central composite design (CCD)  optimized synthesis of Fe3O4@SiO2@AgCl/Ag/Ag2S  as a novel magnetic nano-photocatalyst for catalytic  degradation of organic pollutants", Journal of Environmental  Chemical Engineering, 6(6), pp. 7284{7293  (2018).  31. Nguyen, T.D., Phan, N.H., Do, M.H., and Ngo, K.T.  Magnetic Fe2MO4 (M:Fe, Mn) activated carbons:  Fabrication, characterization and heterogeneous Fenton  oxidation of methyl orange", Journal of Hazardous  Materials, 185(2), pp. 653{661 (2011).  32. Smith, Y.R., Kar, A., and Subramanian, V. Investigation  of physicochemical parameters that inuence  photocatalytic degradation of methyl orange over TiO2  Nanotubes", Industrial and Engineering Chemistry  Research, 48(23), pp. 10268{10276 (2009).  33. Rioja, N., Zorita, S., and Penas, F.J. E_ect of water  matrix on photocatalytic degradation and general kinetic  modeling", Applied Catalysis B: Environmental,  180, pp. 330{335 (2016).  34. Aguedach, A., Brosillon, S., and Morvan, J. Inuence  of ionic strength in the adsorption and during photocatalysis  of reactive black 5 azo dye on TiO2 coated on  non woven paper with SiO2 as a binder", Journal of  Hazardous Materials, 150(2), pp. 250{256 (2008).  35. Chen, P., Zhang, Q., Shen, L., Li, R., Tan, C.,  Chen, T., Liu, H., Liu, Y., Cai, Z., Liu, G., and  Lv, W. Insights into the synergetic mechanism of a  combined vis-RGO/TiO2/peroxodisulfate system for  the degradation of PPCPs: Kinetics, environmental  factors and products", Chemosphere, 216, pp. 341{351  (2019).  36. Lair, A., Ferronato, C., Chovelon, J.M., and Herrmann,  J.M. Naphthalene degradation in water by  heterogeneous photocatalysis: An investigation of the  inuence of inorganic anions", Journal of Photochemistry  and Photobiology A: Chemistry, 193(2), pp. 193{  203 (2008).  37. Farhadian, M., Entezami, N., and Davari, N. Removal  of metronidazole antibiotic pharmaceutical from aqueous  solution using TiO2/Fe2O3/GO photocatalyst:  Experimental study on the e_ects of mineral salts",  Advances in Environmental Technology, 5(1), pp. 55{  65 (2019).  38. El Hassani, K., Kalnina, D., Turks, M., Beakou,  B.H., and Anouar, A. Enhanced degradation of an  azo dye by catalytic ozonation over Ni-containing  layered double hydroxide nanocatalyst", Separation  and Puri_cation Technology, 210, pp. 764{774 (2019).  39. Dugand_zi_c, A.M., Toma_sevi_c, A.V., Radi_si_c, M.M.,  _Sekuljica, N._Z., Mijin, D. _Z., and Petrovi_c, S.D. E_ect  of inorganic ions, photosensitisers and scavengers on  the photocatalytic degradation of nicosulfuron", Journal  of Photochemistry and Photobiology A: Chemistry,  336, pp. 146{155 (2017).  40. Zabat, N. Nickel-substituted polyoxometalate nanomaterial  as a green and recyclable catalyst for dye  decolorization", Arabian Journal for Science and Engineering,  44(1), pp. 227{236 (2019).  41. Zhou, J., Zhang, Z., Kong, X., He, F., Zhao, R.,  Wu, R., Wei, T., Wang, L., and Feng, J. A novel  P-N heterojunction with staggered energy level based  on ZnFe2O4 decorating SnS2 nanosheet for e_cient  photocatalytic degradation", Applied Surface Science,  510, p. 145442 (2020).  42. Lahmar, H., Benamira, M., Douafer, S., Messaadia,  L., Boudjerda, A., and Trari, M. Photocatalytic  degradation of methyl orange on the novel heterosystem  La2NiO4/ZnO under solar light", Chemical  Physics Letters, 742, pp. 137132 (2020).  43. Dou, R., Lin, H., Guo, M., Cao, J., Liu, C., and Chen,  S. Fabrication of Ag/RP composite with excellent  photocatalytic activity for degrading high concentration  of methyl orange solution", Materials Letters,  268, pp. 127612 (2020).  44. Ghattavi, S. and Nezamzadeh-Ejhieh, A. A visible  light driven AgBr/g-C3N4 photocatalyst composite in  methyl orange photodegradation: Focus on photoluminescence,  mole ratio, synthesis method of g{C3N4 and  scavengers", Composites Part B: Engineering, 183, pp.  107712 (2020).  45. Boczar, D., K_ecki, T., and Skompska, M. Visiblelight  driven FexOy/TiO2/Au photocatalyst-synthesis,  characterization and application for methyl orange  photodegradation", Journal of Electroanalytical Chemistry,  859, pp. 113829 (2020).