References 1. Das, T.R. and Sharma, P.K. Bimetal oxide decorated graphene oxide (Gd2O3/Bi2O3@GO) nanocomposite as an excellent adsorbent in the removal of methyl orange dye", Materials Science in Semiconductor Processing, 105, p. 104721 (2020). 2. Fradj, A.B., Boubakri, A., Ha_ane, A., and Hamouda, S.B. Removal of azoic dyes from aqueous solutions by chitosan enhanced ultra_ltration", Results in Chemistry, 2, p. 100017 (2020). 3. Bhatti, M.A., Shah, A.A., Almani, K.F., Tahira, A., Chalangar, S.E., dad Chandio, A., Nur, O., Willander, M., and Ibupoto, Z.H. E_cient photo catalysts based on silver doped ZnO nanorods for the photo degradation of methyl orange", Ceramics International, 45(17), Part B, pp. 23289{23297 (2019). 4. Zhu, Z., Xiang, M., Li, P., Shan, L., and Zhang, P. Surfactant-modi_ed three-dimensional layered double hydroxide for the removal of methyl orange and rhodamine B: Extended investigations in binary dye systems", Journal of Solid State Chemistry, 288, p. 121448 (2020). M. Hajiali et al./Scientia Iranica, Transactions C: Chemistry and ... 28 (2021) 1464{1477 1475 5. Gautam, P.K., Singh, A., Misra, K., Sahoo, A.K., and Samanta, S.K. Synthesis and applications of biogenic nanomaterials in drinking and wastewater treatment", Journal of Environmental Management, 231, pp. 734{ 748 (2019). 6. Gautam, P.K., Shivapriya, P.M., Banerjee, S., Sahoo, A.K., and Samanta, S.K. Biogenic fabrication of iron nanoadsorbents from mixed waste biomass for aqueous phase removal of alizarin red S and tartrazine: Kinetics, isotherm, and thermodynamic investigation", Environmental Progress and Sustainable Energy, 39(2), p. e13326 (2020). 7. Upadhyay, G.K., Rajput, J.K., Pathak, T.K., Pal, P.K., and Purohit, L.P. Tailoring and optimization of hybrid ZnO:TiO2:CdO nanomaterials for advance oxidation process under visible light", Applied Surface Science, 509, p. 145326 (2020). 8. Arshad, R., Bokhari, T.H., Javed, T., Bhatti, I.A., Rasheed, S., Iqbal, M., Nazir, A., Naz, S., Khan, M.I., Khosa, M.K.K., and Zia-ur-Rehman, M. Degradation product distribution of reactive red-147 dye treated by UV/H2O2/TiO2 advanced oxidation process", Journal of Materials Research and Technology, 9(3), pp. 3168{ 3178 (2020). 9. Nguyen, C.H., Tran, M.L., Van Tran, T.T., and Juang, R.S. Enhanced removal of various dyes from aqueous solutions by UV and simulated solar photocatalysis over TiO2/ZnO/rGO composites", Separation and Puri _cation Technology, 232, p. 115962 (2020). 10. Dutta, V., Sharma, S., Raizada, P., Hosseini{ Bandegharaei, A., Kaushal, J., and Singh, P. Fabrication of visible light active BiFeO3/CuS/SiO2 Z{scheme photocatalyst for e_cient dye degradation", Materials Letters, 270, p. 127693 (2020). 11. Taghvaei, H., Farhadian, M., Davari, N., and Maazi, S. Preparation, characterization and photocatalytic degradation of methylene blue by Fe3+ doped TiO2 supported on natural zeolite using response surface methodology", Advances in Environmental Technology, 3(4), pp. 205{216 (2017). 12. Gautam, P.K., Shivalkar, S., and Samanta, S.K. Environmentally benign synthesis of nanocatalysts: Recent advancements and applications", Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, O.V. Kharissova, L.M.T. Mart_Inez and B.I. Kharisov, Eds., pp. 1{19, Cham: Springer International Publishing (2020). 13. Davari, N., Farhadian, M., Nazar, A.R.S., and Homayoonfal, M. Degradation of diphenhydramine by the photocatalysts of ZnO/Fe2O3 and TiO2/Fe2O3 based on clinoptilolite: Structural and operational comparison", Journal of Environmental Chemical Engineering, 5(6), pp. 5707{5720 (2017). 14. Kaiba, A., Ouerghi, O., Geesi, M.H., Elsanousi, A., Belkacem, A., Dehbi, O., Alharthi, A.I., Alotaibi, M.A., and Riadi, Y. Characterization and catalytic performance of Ni-Doped TiO2 as a potential heterogeneous nanocatalyst for the preparation of substituted pyridopyrimidines", Journal of Molecular Structure, 1203, pp. 127376 (2020). 15. Zou, L., Wang, H., Jiang, X., Yuan, G., and Wang, X. Enhanced photocatalytic e_ciency in degrading organic dyes by coupling CdS nanowires with ZnFe2O4 nanoparticles", Solar Energy, 195, pp. 271{277 (2020). 16. Aram, M., Farhadian, M., Nazar, A.R.S., Tangestaninejad, S., Eskandari, P., and Jeon, B.H. Metronidazole and cephalexin degradation by using of urea/TiO2/ZnFe2O4/clinoptiloite catalyst under visible{light irradiation and ozone injection", Journal of Molecular Liquids, 304, p. 112764 (2020). 17. Ai, J., Hu, L., Zhou, Z., Cheng, L., Liu, W., Su, K., Zhang, R., Chen, Z., and Li, W. Surfactant-free synthesis of a novel octahedral ZnFe2O4/graphene composite with high adsorption and good photocatalytic activity for e_cient treatment of dye wastewater", Ceramics International, 46(8), Part B, pp. 11786{ 11798 (2020). 18. Choi, I.A., Kwak, D.H., Han, S.B., Park, J.Y., Park, H.S., Ma, K.B., Kim, D.H., Won, J.E., and Park, K.W. Doped porous carbon nanostructures as non{precious metal catalysts prepared by amino acid glycine for oxygen reduction reaction", Applied Catalysis B: Environmental, 211, pp. 235{244 (2017). 19. Moza_ari, M., Arani, M.E., and Amighian, J. The e_ect of cation distribution on magnetization of ZnFe2O4 nanoparticles", Journal of Magnetism and Magnetic Materials, 322(21), pp. 3240{3244 (2010). 20. Zhu, X., Zhang, F., Wang, M., Ding, J., Sun, S., Bao, J., and Gao, C. Facile synthesis, structure and visible light photocatalytic activity of recyclable ZnFe2O4/TiO2", Applied Surface Science, 319, pp. 83{89 (2014). 21. Nguyen, T.B., Huang, C.P., and Doong, R.A. Photocatalytic degradation of bisphenol A over a ZnFe2O4/TiO2 nanocomposite under visible light", Science of The Total Environment, 646, pp. 745{756 (2019). 22. Xu, Q., Feng, J., Li, L., Xiao, Q., and Wang, J. Hollow ZnFe2O4/TiO2 composites: High{performance and recyclable visible{light photocatalyst", Journal of Alloys and Compounds, 641, pp. 110{118 (2015). 23. Meng, X., Zhuang, Y., Tang, H., and Lu, C. Hierarchical structured ZnFe2O4@SiO2@TiO2 composite for enhanced visible{light photocatalytic activity", Journal of Alloys and Compounds, 761, pp. 15{23 (2018). 24. Zangeneh, H., Zinatizadeh, A.A., Zinadini, S., Feyzi, M., Ra_ee, E., and Bahnemann, D.W. A novel L{ Histidine (C, N) codoped{TiO2{CdS nanocomposite for e_cient visible photo{degradation of recalcitrant compounds from wastewater", Journal of Hazardous Materials, 369, pp. 384{397 (2019). 1476 M. Hajiali et al./Scientia Iranica, Transactions C: Chemistry and ... 28 (2021) 1464{1477 25. Nguyen, T.B. and Doong, R.A. Fabrication of highly visible-light-responsive ZnFe2O4/TiO2 heterostructures for the enhanced photocatalytic degradation of organic dyes", RSC Advances, 6(105), pp. 103428{103437 (2016). 26. Davari, N., Farhadian, M., and Solaimany Nazar, A.R. Synthesis and characterization of Fe2O3 doped ZnO supported on clinoptilolite for photocatalytic degradation of metronidazole", Environmental Technology, pp. 1{13 (2019). 27. Khaki, M.R.D., Shafeeyan, M.S., Raman, A.A.A., and Daud, W.M.A.W. Evaluating the e_ciency of nanosized Cu doped TiO2/ZnO photocatalyst under visible light irradiation", Journal of Molecular Liquids, 258, pp. 354{365 (2018). 28. Nguyen, C.H., Fu, C.C., and Juang, R.S. Degradation of methylene blue and methyl orange by palladiumdoped TiO2 photocatalysis for water reuse: E_ciency and degradation pathways", Journal of Cleaner Production, 202, pp. 413{427 (2018). 29. Chen, H., Xue, C., Cui, D., Liu, M., Chen, Y., Li, Y., and Zhang, W. Co3O4-Ag photocatalysts for the e_cient degradation of methyl orange", RSC Advances, 10(26), pp. 15245{15251 (2020). 30. Mazhari, M.P., Hamadanian, M., Mehipour, M., and Jabbari, V. Central composite design (CCD) optimized synthesis of Fe3O4@SiO2@AgCl/Ag/Ag2S as a novel magnetic nano-photocatalyst for catalytic degradation of organic pollutants", Journal of Environmental Chemical Engineering, 6(6), pp. 7284{7293 (2018). 31. Nguyen, T.D., Phan, N.H., Do, M.H., and Ngo, K.T. Magnetic Fe2MO4 (M:Fe, Mn) activated carbons: Fabrication, characterization and heterogeneous Fenton oxidation of methyl orange", Journal of Hazardous Materials, 185(2), pp. 653{661 (2011). 32. Smith, Y.R., Kar, A., and Subramanian, V. Investigation of physicochemical parameters that inuence photocatalytic degradation of methyl orange over TiO2 Nanotubes", Industrial and Engineering Chemistry Research, 48(23), pp. 10268{10276 (2009). 33. Rioja, N., Zorita, S., and Penas, F.J. E_ect of water matrix on photocatalytic degradation and general kinetic modeling", Applied Catalysis B: Environmental, 180, pp. 330{335 (2016). 34. Aguedach, A., Brosillon, S., and Morvan, J. Inuence of ionic strength in the adsorption and during photocatalysis of reactive black 5 azo dye on TiO2 coated on non woven paper with SiO2 as a binder", Journal of Hazardous Materials, 150(2), pp. 250{256 (2008). 35. Chen, P., Zhang, Q., Shen, L., Li, R., Tan, C., Chen, T., Liu, H., Liu, Y., Cai, Z., Liu, G., and Lv, W. Insights into the synergetic mechanism of a combined vis-RGO/TiO2/peroxodisulfate system for the degradation of PPCPs: Kinetics, environmental factors and products", Chemosphere, 216, pp. 341{351 (2019). 36. Lair, A., Ferronato, C., Chovelon, J.M., and Herrmann, J.M. Naphthalene degradation in water by heterogeneous photocatalysis: An investigation of the inuence of inorganic anions", Journal of Photochemistry and Photobiology A: Chemistry, 193(2), pp. 193{ 203 (2008). 37. Farhadian, M., Entezami, N., and Davari, N. Removal of metronidazole antibiotic pharmaceutical from aqueous solution using TiO2/Fe2O3/GO photocatalyst: Experimental study on the e_ects of mineral salts", Advances in Environmental Technology, 5(1), pp. 55{ 65 (2019). 38. El Hassani, K., Kalnina, D., Turks, M., Beakou, B.H., and Anouar, A. Enhanced degradation of an azo dye by catalytic ozonation over Ni-containing layered double hydroxide nanocatalyst", Separation and Puri_cation Technology, 210, pp. 764{774 (2019). 39. Dugand_zi_c, A.M., Toma_sevi_c, A.V., Radi_si_c, M.M., _Sekuljica, N._Z., Mijin, D. _Z., and Petrovi_c, S.D. E_ect of inorganic ions, photosensitisers and scavengers on the photocatalytic degradation of nicosulfuron", Journal of Photochemistry and Photobiology A: Chemistry, 336, pp. 146{155 (2017). 40. Zabat, N. Nickel-substituted polyoxometalate nanomaterial as a green and recyclable catalyst for dye decolorization", Arabian Journal for Science and Engineering, 44(1), pp. 227{236 (2019). 41. Zhou, J., Zhang, Z., Kong, X., He, F., Zhao, R., Wu, R., Wei, T., Wang, L., and Feng, J. A novel P-N heterojunction with staggered energy level based on ZnFe2O4 decorating SnS2 nanosheet for e_cient photocatalytic degradation", Applied Surface Science, 510, p. 145442 (2020). 42. Lahmar, H., Benamira, M., Douafer, S., Messaadia, L., Boudjerda, A., and Trari, M. Photocatalytic degradation of methyl orange on the novel heterosystem La2NiO4/ZnO under solar light", Chemical Physics Letters, 742, pp. 137132 (2020). 43. Dou, R., Lin, H., Guo, M., Cao, J., Liu, C., and Chen, S. Fabrication of Ag/RP composite with excellent photocatalytic activity for degrading high concentration of methyl orange solution", Materials Letters, 268, pp. 127612 (2020). 44. Ghattavi, S. and Nezamzadeh-Ejhieh, A. A visible light driven AgBr/g-C3N4 photocatalyst composite in methyl orange photodegradation: Focus on photoluminescence, mole ratio, synthesis method of g{C3N4 and scavengers", Composites Part B: Engineering, 183, pp. 107712 (2020). 45. Boczar, D., K_ecki, T., and Skompska, M. Visiblelight driven FexOy/TiO2/Au photocatalyst-synthesis, characterization and application for methyl orange photodegradation", Journal of Electroanalytical Chemistry, 859, pp. 113829 (2020).