Refrences
[1] Arulkarthick, V.J. Rathinaswamy, A. and Srihari, K. “Design of BCD adder with five input majority gate for QCA”, Journal of Microprocessors and Microsystems, 75, (2020).
[2] Cesar, T. F. Vieira, L. F.M. Vieira, M. A.M. et al. “Cellular automata-based byte error correction in QCA”, Nano Communication Networks, 23, (2020).
[3] Lent, C. S. Tougaw, P. D. Porod, W. et al. “Quantum cellular automata”, Nanotechnology, 4(1), pp. 49–57 (1993).
[4] Lent, C. S. and Tougaw, P. D. “A device architecture for computing with quantum dots”, in Proc. IEEE, 85(4), pp. 541-547 (1997).
[5] Lent, C. S. Isaksen, B. and Lieberman, M. “Molecular quantum-dot cellular automata”, Journal of American Chemical Society, 125, pp. 1056–1063 (2003).
[6] Lu, Y. and Lent, C. S. “Theoretical study of molecular quantum-dot cellular automata”, Journal of Computational Electronics, 4(1), pp. 115-118 (2005).
[7] Ahmed, S. and Naz, S. F. “Design of Cost Efficient Modular Digital QCA Circuits using Optimized XOR Gate”, in IEEE Transactions on Circuits and Systems II: Express Briefs, doi: 10.1109/TCSII.2020.3030180.
[8] Kianpour, M. and Sabbaghi-Nadooshan, R. “A Novel Quantum-Dot Cellular Automata X -bit ×32 -bit SRAM”, IEEE Trans. Very Large Scale Integration (VLSI) Systems, 24(3), pp. 827-836 (2016).
[9] Kianpour, M. and Sabbaghi-Nadooshan, R. “A conventional design and simulation for CLB implementation of an FPGA quantum-dot cellular automata”, Journal of Microprocessors and Microsystems, 38(8), pp. 1046-1062 (2014).
[10] Kianpour, M. and Sabbaghi-Nadooshan, R. “A novel QCA implementation of MUX-based universal shift register”, Journal of Computational Electronics, 13(1), pp. 198-210 (2014).
[11] Kianpour, M. and Sabbaghi-Nadooshan, R. “A novel design of 8-bit adder/subtractor by quantum-dot cellular automata”, Journal of Computer and System Sciences, 80(7), pp. 1404-1414 (2014).
[12] Babaie, S. Sadoghifar, A. and Bahar, A. N. “Design of an Efficient Multilayer Arithmetic Logic Unit in Quantum-Dot Cellular Automata (QCA)”, in IEEE Transactions on Circuits and Systems II: Express Briefs, 66(6), pp. 963-967 (2019).
[13] Wang, L. and Xie, G. “A Novel XOR/XNOR Structure for Modular Design of QCA Circuits”, in IEEE Transactions on Circuits and Systems II: Express Briefs, 67(12), pp. 3327-3331 (2020).
[14] Bajec, I. L. Zimic, N. and Mraz, M. “The ternary quantum-dot cell and ternary logic”, Nanotechnology, 17(8), pp. 1937–1942 (2006).
[15] Pecar, P. Mraz, M. Zimic, N. et al. “Solving the ternary QCA logic gate problem by means of adiabatic switching”, Journal of Applied Physics, 47(6), pp. 5000–5006 (2008).
[16] Tehrani, M. A. Bahrami, S. and Navi, K. “A novel ternary quantum-dot cell for solving majority voter gate problem”, Applied Nanoscience, 4(3), pp. 255–262 (2013).
[17] Arjmand, M. M. Soryani, M. and Navi, K. “Coplanar wire crossing in quantum cellular automata using a ternary cell”, IET Circuits, Devices & Systems, 7(5), pp. 263-272 (2013).
[18] Shahrom, E. and Hosseini, S. A. “A new low power multiplexer based ternary multiplier using CNTFETs”, AEU - International Journal of Electronics and Communications, 93, pp. 191-207 (2018).
[19] Daraei, A. and Hosseini, S. A. “Novel energy-efficient and high-noise margin quaternary circuits in nanoelectronics”, AEU - International Journal of Electronics and Communications, 105, pp. 145-162 (2019).
[20] Mohaghegh, SM. Sabbaghi-Nadooshan, R. and Mohammadi, M. “Innovative model for ternary QCA gates”, IET Circuits, Devices & Systems, 12(2), pp. 189–195 (2018).
[21] Mohaghegh, SM. Sabbaghi-Nadooshan, R. and Mohammadi, M. “Designing ternary quantum-dot cellular automata logic circuits based upon an alternative model”, Computers & Electrical Engineering, 71, pp. 43–59 (2018).
[22] Mohaghegh, SM. Sabbaghi-Nadooshan, R. and Mohammadi, M. “Design of a ternary QCA multiplier and multiplexer: a model-based approach”, Analog Integr Circ Sig Process, 101, pp. 23–29 (2019).
[23] Almatrood, A. F. and Singh, H. “Design of Generalized Pipeline Cellular Array in Quantum-Dot Cellular Automata”, IEEE Computer Architecture Letters, 17(1), pp. 29-32 (2018).
[24] Abedi, D. and Jaberipur, G. “Decimal Full Adders Specially Designed for Quantum-Dot Cellular Automata”, IEEE Trans. Circuits and Systems II: Express Briefs, 65(1), pp. 106-110 (2018).
[25] Orlov, A. O. Amlani, I. Bernstein, G. H. et al. “Realization of a functional cell for quantum-dot cellular automata”, Science, 277(5328), pp. 928-930 (1997).
[26] Lent, C. S. and Isaksen, B. “Clocked molecular quantum-dot cellular automata”, IEEE Transactions on Electron Devices, 50(9), pp. 1890-1896 (2003).
[27] Amlani, I. Orlov, A. O. Kummamuru, R. K. et al. “Experimental demonstration of a leadless quantum-dot cellular automata cell”, Appl. Phys. Lett., 77(5), pp. 738-740 (2000).
[28] Das, K. De, D. and De, M. “Realisation of semiconductor ternary quantum dot cellular automata”, IET Micro Nano Lett., 8(5), pp. 258-263 (2013).
[29] Lu, Y. Liu, M. and Lent, C. S. “Molecular quantum-dot cellular automata: From molecular structure to circuit dynamics”, Journal of Applied Physics, 102(3), 034311 (2007).
[30] Blair, E. “Electric-Field Inputs for Molecular Quantum-Dot Cellular Automata Circuits”, in IEEE Transactions on Nanotechnology, 18, pp. 453-460 (2019).
[31] Alam, M. T. Siddiq, M. J. Bernstein, G. H. et al. “On-Chip Clocking for Nanomagnet Logic Devices”, IEEE Trans. Nanotechnology, 9(3), pp. 348-351 (2010).
[33] Pain, P. Sadhu, A. Das, K. et al. “Physical Proof and Simulation of Ternary Logic Gate in Ternary Quantum Dot Cellular Automata”, Computational Advancement in Communication Circuits and Systems, Lecture Notes in Electrical Engineering, 575, pp. 375-385 (2020).
[34] Bhoi, B. K. Misra, N. K. Dash, I. et al. “A Redundant Adder Architecture in Ternary Quantum-Dot Cellular Automata”, Smart Intelligent Computing and Applications, 159, pp. 375-384 (2020).
[35] Walus, K. Dysart, T. J. Jullien, G. A. et al. “QCADesigner: a rapid design and Simulation tool for quantum-dot cellular automata”, IEEE Trans. Nanotechnology, 3(1), pp. 26-31 (2004).