TQCAsim: An Accurate Design and Essential Simulation Tool for Ternary Logic Quantum-Dot Cellular Automata

Document Type : Article

Authors

1 Department of Electrical and Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 - Department of Electrical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran - School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

Abstract

Having a reliable simulation tool for evaluating the performance of each design is indispensable. Designing multiple-valued logic (MVL) systems help to overcome the limitations existing in binary systems. Quantum-dot cellular automata (QCA) is a technology that can be substituted for CMOS in MVL designs. This paper represents an exquisite software platform for designing and simulating circuits which are restricted to three-valued logic (Ternary) quantum-dot cellular automata (QCA). Working with TQCAsim is so convenient because it can run in both Windows or Linux based computers. It has a tenacious simulation engine that can warranty precise results. This tool shows the results in graphical formats. As well, designers can easily layout their ternary QCA designs by using various sets of CAD tools. In this paper, the ternary model of QCA and its energy calculation will be demonstrated. The simulation Process will be explained step by step. MIN, MAX, NOT, and XOR gates had been simulated already by this software.

Keywords


Refrences

[1]      Arulkarthick, V.J. Rathinaswamy, A. and Srihari, K. “Design of BCD adder with five input majority gate for QCA”, Journal of Microprocessors and Microsystems, 75, (2020).
[2]      Cesar, T. F. Vieira, L. F.M. Vieira, M. A.M. et al. “Cellular automata-based byte error correction in QCA”, Nano Communication Networks, 23, (2020).
[3]      Lent, C. S. Tougaw, P. D. Porod, W. et al. “Quantum cellular automata”, Nanotechnology, 4(1), pp. 49–57 (1993).
[4]      Lent, C. S. and Tougaw, P. D. “A device architecture for computing with quantum dots”, in Proc. IEEE, 85(4), pp. 541-547 (1997).
[5]      Lent, C. S. Isaksen, B. and Lieberman, M. “Molecular quantum-dot cellular automata”, Journal of American Chemical Society, 125, pp. 1056–1063 (2003).
[6]      Lu, Y. and Lent, C. S. “Theoretical study of molecular quantum-dot cellular automata”, Journal of Computational Electronics, 4(1), pp. 115-118 (2005).
[7]      Ahmed, S. and Naz, S. F. “Design of Cost Efficient Modular Digital QCA Circuits using Optimized XOR Gate”, in IEEE Transactions on Circuits and Systems II: Express Briefs, doi: 10.1109/TCSII.2020.3030180.
[8]      Kianpour, M. and Sabbaghi-Nadooshan, R. “A Novel Quantum-Dot Cellular Automata X -bit ×32 -bit SRAM”, IEEE Trans. Very Large Scale Integration (VLSI) Systems, 24(3), pp. 827-836 (2016).
[9]      Kianpour, M. and Sabbaghi-Nadooshan, R. “A conventional design and simulation for CLB implementation of an FPGA quantum-dot cellular automata”, Journal of Microprocessors and Microsystems, 38(8), pp. 1046-1062 (2014).
[10]   Kianpour, M. and Sabbaghi-Nadooshan, R. “A novel QCA implementation of MUX-based universal shift register”, Journal of Computational Electronics, 13(1), pp. 198-210 (2014).
[11]   Kianpour, M. and Sabbaghi-Nadooshan, R. “A novel design of 8-bit adder/subtractor by quantum-dot cellular automata”, Journal of Computer and System Sciences, 80(7), pp. 1404-1414 (2014).
[12]   Babaie, S. Sadoghifar, A. and Bahar, A. N. “Design of an Efficient Multilayer Arithmetic Logic Unit in Quantum-Dot Cellular Automata (QCA)”, in IEEE Transactions on Circuits and Systems II: Express Briefs, 66(6), pp. 963-967 (2019).
[13]   Wang, L. and Xie, G. “A Novel XOR/XNOR Structure for Modular Design of QCA Circuits”, in IEEE Transactions on Circuits and Systems II: Express Briefs, 67(12), pp. 3327-3331 (2020).
[14]   Bajec, I. L. Zimic, N. and Mraz, M. “The ternary quantum-dot cell and ternary logic”, Nanotechnology, 17(8), pp. 1937–1942 (2006).
[15]   Pecar, P. Mraz, M. Zimic, N. et al. “Solving the ternary QCA logic gate problem by means of adiabatic switching”, Journal of Applied Physics, 47(6), pp. 5000–5006 (2008).
[16]   Tehrani, M. A. Bahrami, S. and Navi, K. “A novel ternary quantum-dot cell for solving majority voter gate problem”, Applied Nanoscience, 4(3), pp. 255–262 (2013).
[17]   Arjmand, M. M. Soryani, M. and Navi, K. “Coplanar wire crossing in quantum cellular automata using a ternary cell”, IET Circuits, Devices & Systems, 7(5), pp. 263-272 (2013).
[18]   Shahrom, E. and Hosseini, S. A. “A new low power multiplexer based ternary multiplier using CNTFETs”, AEU - International Journal of Electronics and Communications, 93, pp. 191-207 (2018).
[19]   Daraei, A. and Hosseini, S. A. “Novel energy-efficient and high-noise margin quaternary circuits in nanoelectronics”, AEU - International Journal of Electronics and Communications, 105, pp. 145-162 (2019).
[20]   Mohaghegh, SM. Sabbaghi-Nadooshan, R. and Mohammadi, M. “Innovative model for ternary QCA gates”, IET Circuits, Devices & Systems, 12(2), pp. 189–195 (2018).
[21]   Mohaghegh, SM. Sabbaghi-Nadooshan, R. and Mohammadi, M. “Designing ternary quantum-dot cellular automata logic circuits based upon an alternative model”, Computers & Electrical Engineering, 71, pp. 43–59 (2018).
[22]   Mohaghegh, SM. Sabbaghi-Nadooshan, R. and Mohammadi, M. “Design of a ternary QCA multiplier and multiplexer: a model-based approach”, Analog Integr Circ Sig Process, 101, pp. 23–29 (2019).
[23]   Almatrood, A. F. and Singh, H. “Design of Generalized Pipeline Cellular Array in Quantum-Dot Cellular Automata”, IEEE Computer Architecture Letters, 17(1), pp. 29-32 (2018).
[24]   Abedi, D. and Jaberipur, G. “Decimal Full Adders Specially Designed for Quantum-Dot Cellular Automata”, IEEE Trans. Circuits and Systems II: Express Briefs, 65(1), pp. 106-110 (2018).
[25]   Orlov, A. O. Amlani, I. Bernstein, G. H. et al. “Realization of a functional cell for quantum-dot cellular automata”, Science, 277(5328), pp. 928-930 (1997).
[26]   Lent, C. S. and Isaksen, B. “Clocked molecular quantum-dot cellular automata”, IEEE Transactions on Electron Devices, 50(9), pp. 1890-1896 (2003).
[27]   Amlani, I. Orlov, A. O. Kummamuru, R. K. et al. “Experimental demonstration of a leadless quantum-dot cellular automata cell”, Appl. Phys. Lett., 77(5), pp. 738-740 (2000).
[28]   Das, K. De, D. and De, M. “Realisation of semiconductor ternary quantum dot cellular automata”, IET Micro Nano Lett., 8(5), pp. 258-263 (2013).
[29]   Lu, Y. Liu, M. and Lent, C. S. “Molecular quantum-dot cellular automata: From molecular structure to circuit dynamics”, Journal of Applied Physics, 102(3), 034311 (2007).
[30]   Blair, E. “Electric-Field Inputs for Molecular Quantum-Dot Cellular Automata Circuits”, in IEEE Transactions on Nanotechnology, 18, pp. 453-460 (2019).
[31]   Alam, M. T. Siddiq, M. J. Bernstein, G. H. et al. “On-Chip Clocking for Nanomagnet Logic Devices”, IEEE Trans. Nanotechnology, 9(3), pp. 348-351 (2010).
[33]   Pain, P. Sadhu, A. Das, K. et al. “Physical Proof and Simulation of Ternary Logic Gate in Ternary Quantum Dot Cellular Automata”, Computational Advancement in Communication Circuits and Systems, Lecture Notes in Electrical Engineering, 575, pp. 375-385 (2020).
[34]   Bhoi, B. K. Misra, N. K. Dash, I. et al. “A Redundant Adder Architecture in Ternary Quantum-Dot Cellular Automata”, Smart Intelligent Computing and Applications, 159, pp. 375-384 (2020).
[35]   Walus, K. Dysart, T. J. Jullien, G. A. et al. “QCADesigner: a rapid design and Simulation tool for quantum-dot cellular automata”, IEEE Trans. Nanotechnology, 3(1), pp. 26-31 (2004).