References 1. Eastman, J.A. and Choi, U.S. Anamalously increased e_ective thermal conductivites of thylene glycol-based nano uid containing copper nano particles", Applied Physics Letters, 78, pp. 718{728 (2001). 2. Vishwas, V. and Vadekar, M. ILs as heat transfer uids - An assessment using industrial exchanger geometries", Applied Thermal Engineering, 111(25), pp. 1581{1587 (2017). 3. Lamas, A., Brito, I., Salazar. F., et al. Synthesis and characterization of physical, thermal and thermodynamic properties of ILs based on [C12mim] and [N444H] cations for thermal energy storage", Journal of Molecular Liquids, 224, pp. 999{1007 (2016). 4. Valkenburg, M.E., Vaughn, R.L., Williams, M., et al. Thermochemistry of IL heat-transfer uids", Thermochimica Acta., 425, pp. 181{188 (2005). 1462 S. Asleshirin et al./Scientia Iranica, Transactions C: Chemistry and ... 28 (2021) 1452{1463 5. Sa_arian, M. and Moravej, M. Heat transfer enhancement in a at plate solar collector with di_erent ow path shapes using nanouid", Renewable Energy, 146, pp. 2316{2329 (2020). 6. Guo, Y. and Liu, G. Solvent-free ionic silica nanouids: Smart lubrication materials exhibiting remarkable responsiveness to weak electrical stimuli", Chemical Engineering Journal, 383, pp. 123{202 (2020). 7. Ribeiro, A.P.C., Louren_co, M.J.V., and Nieto de Castro, C.A. Thermal conductivity of ionanouids", 7th Symp. Thermophysical Properties, Boulder, pp. 21{26 (2009). 8. Nieto de Castro, C.A., Lourenco, M.J.V., and Ribeiro, A.P.C. Thermal properties of ILs and ionanouids of imidazolium and pyrrolidinium liquids", J. Chem. Eng. Data, 55(2), pp. 653{661 (2010). 9. Nieto de Castro, C.A., Murshed, S.M.S., and Santos, F.J.V. Enhanced thermal conductivity and speci_c heat capacity of carbon nanotubes ionanouids", Int. J. Therm. Sci., 62, pp. 34{39 (2012). 10. Ribeiro, A.P.C., Vieira, S.I.C., and Franca, J.M. Thermal Properties of ILs and Ionanouids" (2010). 11. Nieto de Castro, C.A. and Murshed, S.M.S. Enhanced thermal conductivity and speci_c heat capacity of carbon nanotubes ionanouids", International Journal of Thermal Sciences, 62, pp. 34{39 (2012). 12. Nieto de Castro, C.A., Murshed, S.M.S., Lourenco, M.J.V., et al. Enhanced thermal conductivity and speci_c heat capacity of carbon nanotubes ionanouids", International Journal of Thermal Sciences, 62, pp. 34{39 (2012). 13. Franca, J.M.P., Vieira, S.I.C., Louren_co, M.J.V., et al. Thermal conductivity of [C4mim][(CF3SO2)2N] and [C2mim][EtSO4] and their IoNanouids with carbon nanotubes: Experiment and theory", Journal of Chemical & Engineering Data, 58(2), pp. 467{476 (2013). 14. Murshed, S.M.S., Nieto de Castro, C.A., et al. E_ect of surfactant and nanoparticle clustering on thermal conductivity of aqueous nanouids", J. Nanouids, 1, pp. 175{179 (2012). 15. Wang, B. and Wang, X. IL-based stable nanouids containing gold nanoparticles", Journal of Colloid and Interface Science, 362, pp. 5{14 (2011). 16. Elise, B.F., Ann, E.V., Nicholas, J., et al. Thermophysical properties of Nanoparticle-Enhanced ILs (NEILs) heat-transfer uids", Energy Fuel, 16, pp. 3385{3393 (2013). 17. Titan, C.P. and Morshed, A.K. Nanoparticle enhanced ILs(NEILS)as working uid for the next generation solar collector", Procedia Engineering, 56, pp. 631{636 (2013). 18. Franca, J.M.P., Reis, F., and Vieira, S.I.C. Thermophysical properties of IL dicyanamide (DCA) nanosystems", J. Chem. Thermodynamics, 79, pp. 248{257 (2014). 19. Nieto de Castro, C.A., Louren_co, M.J.V., Ribeiro, A.P.C., et al. Thermal Properties of ILs and Io- Nanouids of Imidazolinium and Pyrrolinium Liquids", J. Chem. Eng. Data, 55, pp. 653{661 (2010). 20. Liu, J., Wang, F., Zhang, L., et al. Thermodynamic properties and thermal stability of ionic liquidbased nanouids containing graphene as advanced heat transfer uids for medium-to-high-temperature applications", Renewable Energy, 63, pp. 519{523 (2014). 21. Titan, C.P., Morshed, M., and Jamil, A. E_ect of nanoparticle dispersion on thermophysical properties of ionic liquids for its potential application in solar collector", Procedia Engineering, 90, pp. 643{648 (2014). 22. Wang, F., Han, J., Zhang, Z., et al. Surfactantfree ionic liquid-based nanouids with remarkable thermal conductivity enhancement at very low loading of graphene", Nanoscale Research Letters, 7, pp. 276{314 (2012). 23. Ferreira, A.G.M. and Sim~oes, P.N. Transport and thermal properties of quaternary phosphonium ionic liquids and IoNanouids", J. Chem. Thermodynamics, 64, pp. 80{92 (2013). 24. Titan, C.P. and Murshed, A.K.M.M., et al. Enhanced thermophysical properties of NEILs as heat transfer uids for solar thermal application", Applied Thermal Engineering, 110, pp. 1{9 (2017). 25. Zongchang, H.X. and Zhao, Z.J. Measurment of thermal conductivity, viscosity and density of ionic liquid[EMIM][DEP]-based nanouids", Chinese Journal of Chemical Engineering, 24, pp. 331{338 (2016). 26. Astam, K.P., Dutta, A., and Bhaumik, A. Selfassembled mesoporous-Al2O3 spherical nanoparticles and their e_ciency for the removal of arsenic from water", Journal of Hazardous Materials, 201, pp. 170{ 177 (2012). 27. Chen, X.Y., Zhang, Z.J., Liang, X., et al. Controlled hydrothermal synthesis of colloidal boehmite (- AlOOH) nanorods and nanoakes and their conversion into -Al2O3 nanocrystals", Solid State Communications, 145, pp. 368{373 (2008). 28. Murshed, S.M.S., Leong, K.C., and Yang, C. Investigations of thermal conductivity and viscosity of nanouids", International Journal of Thermal Sciences, 47(5), pp. 560{568 (2008). 29. Alawi, O.A. and Sidik, N.A.C., et al. Thermal conductivity and viscosity models of metallic oxides nanouids", Int. J. Heat Mass Transfer., 116, pp. 1314{1325 (2018). 30. Selvakumar, R.D. and Dhinakaran, S. E_ective viscosity of nanouids - A modi_ed Krieger-Dougherty S. Asleshirin et al./Scientia Iranica, Transactions C: Chemistry and ... 28 (2021) 1452{1463 1463 model based on particle size distribution (PSD) analysis", J. Mol. Liq., 225, pp. 20{27 (2017). 31. Yu, W. and Choi, S.U.S. The role of interfacial layers in the enhanced thermal conductivity of nanouids: A renovated Maxwell model", J. Nanopart. Res., 5(1), pp. 167{171 (2003). 32. Arul Raja, R.A. and Sunil, J. Estimation of thermal conductivity of nanouids using theoretical correlations", International Journal of Applied Engineering Research., 13, pp. 7932{7936 (2018).