Triple-enzymatic activity of CuMn2O4 nanoparticles: Analytical applications for H2O2 and L-cysteine detection

Document Type : Article


Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, P.O. Box 1914, Iran



CuMn2O4 NPs were prepared via coprecipitation method and characterized using microscopic and spectroscopic analyses. CuMn2O4 NPs exhibit a triple-enzymatic activity including peroxidase-, oxidase- and catalase-like activity. The effect of various parameters on the initial rate of the catalytic reaction of CuMn2O4 NPs with peroxidase- and oxidase-like activity was studied by UV-vis spectrometer following the increasing absorption at 415 nm corresponding to the oxidation product of substrate o-phenylenediamine (OPD). Kinetic analyses indicate the Michaelis-Menten model for CuMn2O4 NPs for both peroxidase- and oxidase-like activity. Based on the high peroxidase-like activity of CuMn2O4 NPs, they were further studied as a colorimetric sensor for the detection of H2O2 with a linear range from 0.5 mM to 22 mM and detection limit of 0.11 mM. Inhibition of the high oxidase-like activity of CuMn2O4 NPs was utilized for colorimetric detection of L-cysteine with a linear range from 50 µM to 200 µM and a detection limit of 54.15 µM.


[1] Champe, P.C., Harvey, R.A. and Ferrier, D.R. "Biochemistry", Lippincott Williams & Wilkins (2005).
[2] Xie, J., Zhang, X., Wang, H., Zheng, H. and Huang, Y. "Analytical and environmental applications of nanoparticles as enzyme mimetics", TrAC Trends in Anal. Chem. 39, pp. 114-129 (2012).
[3] Wulff G. "Enzyme-like catalysis by molecularly imprinted polymers", Chem. Rev., 102 (1),  pp. 1-28 (2002).
[4] Gao, L., Zhuang, J., Nie, L., Zhang, J., Zhang, Y., Gu, N., Wang, T., Feng, J., Yang, D., Perrett, S. and Yan, X. "Intrinsic peroxidase-like activity of ferromagnetic nanoparticles", Nature Nanotechnol., 2 (9), p. 577 (2007).
[5] Ragg, R., Tahir, M.N. and Tremel, W. "Solids go bio: inorganic nanoparticles as enzyme mimics", Europ. J. Inorg. Chem., 2016 (13-14),  pp. 1906-1915 (2016).
[6] Kuah, E., Toh, S., Yee, J., Ma, Q. and Gao, Z. "Enzyme mimics: advances and applications", Chem. Eur. J., 22 (25), pp. 8404-8430 (2016).
[7] He, W., Wamer, W., Xia, Q., Yin, J.J. and Fu, P.P. "Enzyme-like activity of nanomaterials", J. Environ. Sci. Health C, 32 (2), pp. 186-211 (2014).
[8] Wei, H. and Wang, E. "Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes", Chem. Soc. Rev., 42 (14), pp. 6060-6093 (2013).
[9] Chaibakhsh, N. and Moradi-Shoeili, Z. "Enzyme mimetic activities of spinel substituted nanoferrites (MFe2O4): A review of synthesis, mechanism and potential applications", Mat. Sci. Eng. C, 99, pp. 1424-1447 (2019).
[10] Cui, R., Han, Z. and Zhu, J.J. "Helical carbon nanotubes: intrinsic peroxidase catalytic activity and its application for biocatalysis and biosensing", Chem. Europ. J., 17 (34), pp. 9377-9384 (2011).
[11] Qu, F., Li, T. and Yang, M. "Colorimetric platform for visual detection of cancer biomarker based on intrinsic peroxidase activity of graphene oxide", Biosens. Bioelectron., 26 (9), pp. 3927-3931 (2011).
[12] Shi, W., Wang, Q., Long, Y., Cheng, Z., Chen, S., Zheng, H. and Huang, Y. "Carbon nanodots as peroxidase mimetics and their applications to glucose detection", Chem. Commun., 47 (23), pp. 6695-6697 (2011).
[13] Ma, M., Zhang, Y. and Gu, N. "Peroxidase-like catalytic activity of cubic Pt nanocrystals", Colloids Surf. A, 373 (1-3), pp. 6-10 (2011).
[14] Jv, Y., Li, B. and Cao R. "Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection", Chem. Commun., 46 (42), pp. 8017-8019 (2010).
[15] Hu, L., Yuan, Y., Zhang, L., Zhao, J., Majeed, S. and Xu, G. "Copper nanoclusters as peroxidase mimetics and their applications to H2O2 and glucose detection", Anal. Chim. Acta, 762, pp. 83-86 (2013).
[16] Su, H., Liu, D.D., Zhao, M., Hu, W.L., Xue, S.S., Cao, Q., Le, X.Y., Ji, L.N. and Mao, Z.W. "Dual-enzyme characteristics of polyvinylpyrrolidone-capped iridium nanoparticles and their cellular protective effect against H2O2-induced oxidative damage", ACS Appl. Mater. Interfaces, 7 (15), pp. 8233-8242 (2015).
[17] Liu, Y., Zhu, G., Bao, C., Yuan, A. and Shen, X. "Intrinsic Peroxidase‐like Activity of Porous CuO Micro‐/nanostructures with Clean Surface", Chin. J. Chem., 32 (2), pp. 151-156 (2014).
[18] Liu, X., Wang, Q., Zhao, H., Zhang, L., Su, Y. and Lv, Y. "BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics", Analyst, 137 (19), pp. 4552-4558 (2012).
[19] Jiao, X., Song, H., Zhao, H., Bai, W., Zhang, L. and Lv, Y. "Well-redispersed ceria nanoparticles: promising peroxidase mimetics for H2O2 and glucose detection", Anal. Methods, 4 (10), pp. 3261-3267 (2012).
[20] He, W., Jia, H., Li, X., Lei, Y., Li, J., Zhao, H., Mi, L., Zhang, L. and Zheng, Z. "Understanding the formation of CuS concave superstructures with peroxidase-like activity", Nanoscale, 4 (11), pp. 3501-3506 (2012).
[21] Lin, T., Zhong, L., Guo, L., Fu, F. and Chen, G. "Seeing diabetes: visual detection of glucose based on the intrinsic peroxidase-like activity of MoS2 nanosheets", Nanoscale, 6 (20), pp. 11856-11862 (2014).
[22] Ding, Y., Yang, B., Liu, H., Liu, Z., Zhang, X., Zheng, X. and Liu, Q. "FePt-Au ternary metallic nanoparticles with the enhanced peroxidase-like activity for ultrafast colorimetric detection of H2O2", Sens. Actuators B., Chem., 259, pp. 775-783 (2018).
[23] He, W., Wu, X., Liu, J., Hu, X., Zhang, K., Hou, S., Zhou, W. and Xie, S. "Design of AgM bimetallic alloy nanostructures (M= Au, Pd, Pt) with tunable morphology and peroxidase-like activity", Chem. Mater., 22 (9), pp. 2988-2994 (2010).
[24] Gao, M., Lu, X., Chi, M., Chen, S. and Wang, C. "Fabrication of oxidase-like hollow MnCo2O4 nanofibers and their sensitive colorimetric detection of sulfite and l-cysteine", Inorg. Chem. Front., 4 (11), pp. 1862-1869 (2017).
[25] Dong, J., Song, L., Yin, J.J., He, W., Wu, Y., Gu, N. and Zhang, Y. "Co3O4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay", ACS Appl. Mater. Interfaces, 6 (3), pp. 1959-1970 (2014).
[26] Yuan, F., Zhao, H., Zang, H., Ye, F. and Quan, X. "Three-dimensional graphene supported bimetallic nanocomposites with DNA regulated-flexibly switchable peroxidase-like activity", ACS Appl. Mater. Interfaces, 8 (15), pp. 9855-9864 (2016).
[27] Wang, H., Li, S., Si, Y., Zhang, N., Sun, Z., Wu, H. and Lin, Y. "Platinum nanocatalysts loaded on graphene oxide-dispersed carbon nanotubes with greatly enhanced peroxidase-like catalysis and electrocatalysis activities", Nanoscale, 6 (14), pp. 8107-8116 (2014).
[28] Golchin, J., Golchin, K., Alidadian, N., Ghaderi, S., Eslamkhah, S., Eslamkhah, M. and Akbarzadeh, A. "Nanozyme applications in biology and medicine: an overview", Artif. Cells Nanomed. Biotechnol., 45 (6), pp. 1069-1076 (2017).
[29] Yang, B., Li, J., Deng, H. and Zhang, L. "Progress of mimetic enzymes and their applications in chemical sensors", Crit. Rev. Anal. Chem., 46 (6), pp. 469-481 (2016).
[30] Wang, X., Hu, Y. and Wei, H. "Nanozymes in bionanotechnology: from sensing to therapeutics and beyond", Inorg. Chem. Front., 3 (1), pp. 41-60 (2016).
[31] Wang, Q., Zhang, X., Huang, L., Zhang, Z. and Dong, S. "One-pot synthesis of Fe3O4 nanoparticle loaded 3D porous graphene nanocomposites with enhanced nanozyme activity for glucose detection", ACS Appl. Mat. Interfaces, 9 (8), pp. 7465-7471 (2017).
[32] Lin, L., Song, X., Chen, Y., Rong, M., Zhao, T., Wang, Y., Jiang, Y. and Chen, X. "Intrinsic peroxidase-like catalytic activity of nitrogen-doped graphene quantum dots and their application in the colorimetric detection of H2O2 and glucose", Anal. Chim. Acta, 869, pp. 89-95 (2015).
[33] Li, W., Zhi, X., Yang, J., Zhang, J. and Fu, Y. "Colorimetric detection of cysteine and homocysteine based on an oligonucleotide-stabilized Pd nanozyme", Anal. Methods, 8 (25), pp. 5111-5116 (2016).
[34] Zhang, D., Chen, Z., Omar, H., Deng, L. and Khashab, N.M. "Colorimetric peroxidase mimetic assay for uranyl detection in sea water", ACS Appl. Mater. Interfaces, 7 (8), pp. 4589-4594 (2015).
[35] Sahoo, R., Santra, S., Ray, C., Pal, A., Negishi, Y., Ray, S.K. and Pal, T. "Hierarchical growth of ZnFe2O4 for sensing applications", New J. Chem., 40 (2), pp. 1861-1871 (2016).
[36] Jia, H., Yang, D., Han, X., Cai, J., Liu, H. and He, W. "Peroxidase-like activity of the Co3O4 nanoparticles used for biodetection and evaluation of antioxidant behavior", Nanoscale, 8 (11), pp. 5938-5945 (2016).
[37] Jin, C., Lu, F., Cao, X., Yang, Z. and Yang, R. "Facile synthesis and excellent electrochemical properties of NiCo2O4 spinel nanowire arrays as a bifunctional catalyst for the oxygen reduction and evolution reaction", J. Mater. Chem. A, 1 (39), pp. 12170-12177 (2013).
[38] Vetr, F., Moradi-Shoeili, Z. and Özkar, S. "Mesoporous MnCo2O4 with efficient peroxidase mimetic activity for detection of H2O2", Inorg. Chem. Commun., 98, pp. 184-191 (2018).
[39] Vetr, F., Moradi-Shoeili, Z. and Özkar, S. "Oxidation of o‐phenylenediamine to 2, 3‐diaminophenazine in the presence of cubic ferrites MFe2O4 (M= Mn, Co, Ni, Zn) and the application in colorimetric detection of H2O2", Appl. Organomet. Chem., 32 (9), e4465 (2018).
[40] Leal, E., Dantas, J., dos Santos, P.T.A., Bicalho, S.M.D.C.M., Kiminami, R.H.G.A., da Silva, M.R. and de Melo Costa, A.C.F. "Effect of the surface treatment on the structural, morphological, magnetic and biological properties of MFe2O4 iron spinels (M= Cu, Ni, Co, Mn and Fe)", Appl.Surf. Sci., 455, pp. 635-645 (2018).
[41] Su, L., Qin, W., Zhang, H., Rahman, Z.U., Ren, C., Ma, S. and Chen, X. "The peroxidase/catalase-like activities of MFe2O4 (M= Mg, Ni, Cu) MNPs and their application in colorimetric biosensing of glucose", Biosens. Bioelectron., 63, pp. 384-391 (2015).
[42] Wang, T., Su, P., Li, H., Yang, Y. and Yang, Y. "Triple-enzyme mimetic activity of Co3O4 nanotubes and their applications in colorimetric sensing of glutathione:, New J. Chem., 40 (12), pp. 10056-10063 (2016).
[43] Zhu, X., Zhao, H., Niu, X., Liu, T., Shi, L. and Lan, M. "A comparative study of carbon nanotube supported MFe2O4 spinels (M= Fe, Co, Mn) for amperometric determination of H2O2 at neutral pH values", Microchim. Acta, 183 (8), pp. 2431-2439 (2016).
[44] Hutchings, G.J., Mirzaei, A.A., Joyner, R.W., Siddiqui, M.R.H. and Taylor, S.H. "Effect of preparation conditions on the catalytic performance of copper manganese oxide catalysts for CO oxidation", Appl. Catal. A, 166 (1), pp. 143-152 (1998).
[45] Hall, B.D., Zanchet, D. and Ugarte, D. "Estimating nanoparticle size from diffraction measurements", J. Appl. Crystallogr., 33 (6), pp. 1335-1341(2000).
[46] Saravanakumar, B., Lakshmi, S.M., Ravi, G., Ganesh, V., Sakunthala, A. and Yuvakkumar, R. "Electrochemical properties of rice-like copper manganese oxide (CuMn2O4) nanoparticles for pseudocapacitor applications", J. Alloys Compd, 723, pp. 115-122 (2017).
[47] Lin, T., Zhong, L., Song, Z., Guo, L., Wu, H., Guo, Q., Chen, Y., Fu, F. and Chen, G. "Visual detection of blood glucose based on peroxidase-like activity of WS2 nanosheets", Biosens. Bioelectron., 62, pp. 302-307 (2014).
[48] Guan, J., Peng, J. and Jin, X. "Synthesis of copper sulfide nanorods as peroxidase mimics for the colorimetric detection of hydrogen peroxide", Anal. Methods, 7 (13), pp. 5454-5461 (2015).
[49] Chen, W., Chen, J., Liu, A.L., Wang, L.M., Li, G.W. and Lin, X.H. "Peroxidase‐like activity of cupric oxide nanoparticle", ChemCatChem, 3 (7), pp. 1151-1154 (2011).
[50] Maddinedi, S.B. and Mandal, B.K. "Peroxidase Like activity of quinic acid stabilized copper oxide nanosheets", Austin J. Anal. Pharm. Chem., 1 (2), p. 4(2014).
[51] Wang, X., Han, Q., Cai, S., Wang, T., Qi, C., Yang, R. and Wang, C. "Excellent peroxidase mimicking property of CuO/Pt nanocomposites and their application as an ascorbic acid sensor", Analyst, 142 (13), pp. 2500-2506 (2017).
[52] Nimse, S.B. and Pal, D. "Free radicals, natural antioxidants, and their reaction mechanisms", Rsc Adv., 5 (35), pp. 27986-28006 (2015).
[53] Shah, J., Purohit, R., Singh, R., Karakoti, A.S. and Singh, S. "ATP-enhanced peroxidase-like activity of gold nanoparticles", J. Colloid. Interface Sci., 456, pp. 100-107 (2015).
[54] Huang, W., Lin, T., Cao, Y., Lai, X., Peng, J. and Tu, J. "Hierarchical NiCo2O4 hollow sphere as a peroxidase mimetic for colorimetric detection of H2O2 and glucose", Sensors, 17 (1), p. 217 (2017).
[55] Chen, W., Cai, S., Ren, Q.Q., Wen, W. and Zhao, Y.D. "Recent advances in electrochemical sensing for hydrogen peroxide: a review", Analyst, 137 (1), pp. 49-58 (2012).
[56] Pundir, C.S., Deswal, R. and Narwal, V. "Quantitative analysis of hydrogen peroxide with special emphasis on biosensors", Bioproc. Biosyst. Eng., 41 (3), pp. 313-329 (2018).
[57] Rhee, S.G., Chang, T.S., Jeong, W. and Kang, D. "Methods for detection and measurement of hydrogen peroxide inside and outside of cells", Mol. Cells, 29 (6), pp. 539-549 (2010).
[58] Sun, Y., Wang, J., Li, W., Zhang, J., Zhang, Y. and Fu, Y. "DNA-stabilized bimetallic nanozyme and its application on colorimetric assay of biothiols", Biosens. Bioelectron., 74, pp. 1038-1046 (2015).
[59] Yang, Y.K., Shim, S. and Tae, J. "Rhodamine–sugar based turn-on fluorescent probe for the detection of cysteine and homocysteine in water", Chem. Commun., 46 (41), pp. 7766-7768 (2010).
[60] Shahrokhian, S. "Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode", Anal. Chem., 73 (24), pp. 5972-5978 (2001).
[61] Chen, Y., Chen, T., Wu, X. and Yang, G. "CuMnO2 nanoflakes as pH-switchable catalysts with multiple enzyme-like activities for cysteine detection", Sens. Actuators B, 279, pp. 374-384 (2019).
[62] Chi, M., Zhu, Y., Jing, L., Wang, C. and Lu, X. "Fabrication of ternary MoS2-polypyrrole-Pd nanotubes as peroxidase mimics with a synergistic effect and their sensitive colorimetric detection of l-cysteine", Anal. Chim. Acta, 1035, pp. 146-153 (2018).
[63] Chen, S., Chi, M., Zhu, Y., Gao, M., Wang, C. and Lu, X. "A facile synthesis of superparamagnetic Fe3O4 nanofibers with superior peroxidase-like catalytic activity for sensitive colorimetric detection of l-cysteine", Appl. Surf. Sci., 440, pp. 237-244 (2018).
[64] Li, Y., Zhang, Z., Tao, Z., Gao, X., Wang, S. and Liu, Y. "A Asp/Ce nanotube-based colorimetric nanosensor for H2O2-free and enzyme-free detection of cysteine", Talanta, 196, pp. 556-562 (2019).