Triple-enzymatic activity of CuMn2O4 nanoparticles: Analytical applications for H2O2 and L-cysteine detection

Document Type : Article

Authors

Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, P.O. Box 1914, Iran

10.24200/sci.2021.55071.4059

Abstract

CuMn2O4 NPs were prepared via coprecipitation method and characterized using microscopic and spectroscopic analyses. CuMn2O4 NPs exhibit a triple-enzymatic activity including peroxidase-, oxidase- and catalase-like activity. The effect of various parameters on the initial rate of the catalytic reaction of CuMn2O4 NPs with peroxidase- and oxidase-like activity was studied by UV-vis spectrometer following the increasing absorption at 415 nm corresponding to the oxidation product of substrate o-phenylenediamine (OPD). Kinetic analyses indicate the Michaelis-Menten model for CuMn2O4 NPs for both peroxidase- and oxidase-like activity. Based on the high peroxidase-like activity of CuMn2O4 NPs, they were further studied as a colorimetric sensor for the detection of H2O2 with a linear range from 0.5 mM to 22 mM and detection limit of 0.11 mM. Inhibition of the high oxidase-like activity of CuMn2O4 NPs was utilized for colorimetric detection of L-cysteine with a linear range from 50 µM to 200 µM and a detection limit of 54.15 µM.

Keywords


References
1. Champe, P.C., Harvey, R.A., and Ferrier, D.R., Bio-    Chemistry, Lippincott Williams & Wilkins (2005).    2. Xie, J., Zhang, X., Wang, H., Zheng, H., and    Huang, Y. Analytical and environmental applications    of nanoparticles as enzyme mimetics", TrAC Trends in    Anal. Chem., 39, pp. 114{129 (2012).    3. Wul_ G. Enzyme-like catalysis by molecularly imprinted    polymers", Chem. Rev., 102(1), pp. 1{28    (2002).    4. Gao, L., Zhuang, J., Nie, L., Zhang, J., Zhang,    Y., Gu, N., Wang, T., Feng, J., Yang, D., Perrett,    S., and Yan, X. Intrinsic peroxidase-like activity    of ferromagnetic nanoparticles", Nature Nanotechnol.,    2(9), p. 577 (2007).    5. Ragg, R., Tahir, M.N., and Tremel, W. Solids go bio:    inorganic nanoparticles as enzyme mimics", Europ. J.    Inorg. Chem., 2016(13{14), pp. 1906{1915 (2016).    6. Kuah, E., Toh, S., Yee, J., Ma, Q., and Gao, Z.    Enzyme mimics: advances and applications", Chem.    Eur. J., 22(25), pp. 8404{8430 (2016).    7. He, W., Wamer, W., Xia, Q., Yin, J.J., and Fu, P.P.    Enzyme-like activity of nanomaterials", J. Environ.    Sci. Health C, 32(2), pp. 186{211 (2014).    8. Wei, H. and Wang, E. Nanomaterials with enzymelike    characteristics (nanozymes): next-generation arti-    _cial enzymes", Chem. Soc. Rev., 42(14), pp. 6060{    6093 (2013).    9. Chaibakhsh, N. and Moradi-Shoeili, Z. Enzyme    mimetic activities of spinel substituted nanoferrites    (MFe2O4): A review of synthesis, mechanism and    potential applications", Mat. Sci. Eng. C, 99, pp.    1424{1447 (2019).    10. Cui, R., Han, Z., and Zhu, J.J. Helical carbon    nanotubes: intrinsic peroxidase catalytic activity and    its application for biocatalysis and biosensing", Chem.    Europ. J., 17(34), pp. 9377{9384 (2011).    11. Qu, F., Li, T., and Yang, M. Colorimetric platform    for visual detection of cancer biomarker based on intrinsic    peroxidase activity of graphene oxide", Biosens.    Bioelectron., 26(9), pp. 3927{3931 (2011).    12. Shi, W., Wang, Q., Long, Y., Cheng, Z., Chen,    S., Zheng, H., and Huang, Y. Carbon nanodots as    peroxidase mimetics and their applications to glucose    detection", Chem. Commun., 47(23), pp. 6695{6697    (2011).    13. Ma, M., Zhang, Y., and Gu, N. Peroxidase-like    catalytic activity of cubic Pt nanocrystals", Colloids    Surf. A, 373(1{3), pp. 6{10 (2011).    14. Jv, Y., Li, B., and Cao R. Positively-charged gold    nanoparticles as peroxidiase mimic and their application    in hydrogen peroxide and glucose detection",    Chem. Commun., 46(42), pp. 8017{8019 (2010).    15. Hu, L., Yuan, Y., Zhang, L., Zhao, J., Majeed, S., and    Xu, G. Copper nanoclusters as peroxidase mimetics    and their applications to H2O2 and glucose detection",    Anal. Chim. Acta, 762, pp. 83{86 (2013).    16. Su, H., Liu, D.D., Zhao, M., Hu, W.L., Xue, S.S.,    Cao, Q., Le, X.Y., Ji, L.N., and Mao, Z.W. Dualenzyme    characteristics of polyvinylpyrrolidone-capped    iridium nanoparticles and their cellular protective effect    against H2O2-induced oxidative damage", ACS    Appl. Mater. Interfaces, 7(15), pp. 8233{8242 (2015).    17. Liu, Y., Zhu, G., Bao, C., Yuan, A., and Shen,    X. Intrinsic Peroxidase-like Activity of Porous CuO    Micro-/nanostructures with Clean Surface", Chin. J.    Chem., 32(2), pp. 151{156 (2014).    18. Liu, X., Wang, Q., Zhao, H., Zhang, L., Su, Y., and    Lv, Y. BSA-templated MnO2 nanoparticles as both    peroxidase and oxidase mimics", Analyst, 137(19), pp.    4552{4558 (2012).    19. Jiao, X., Song, H., Zhao, H., Bai, W., Zhang, L., and    Lv, Y. Well-redispersed ceria nanoparticles: promising    peroxidase mimetics for H2O2 and glucose detection",    Anal. Methods, 4(10), pp. 3261{3267 (2012).    20. He, W., Jia, H., Li, X., Lei, Y., Li, J., Zhao, H.,    Mi, L., Zhang, L., and Zheng, Z. Understanding    the formation of CuS concave superstructures with    peroxidase-like activity", Nanoscale, 4(11), pp. 3501{    3506 (2012).    21. Lin, T., Zhong, L., Guo, L., Fu, F., and Chen, G. Seeing    diabetes: visual detection of glucose based on the    intrinsic peroxidase-like activity of MoS2 nanosheets",    Nanoscale, 6(20), pp. 11856{11862 (2014).    22. Ding, Y., Yang, B., Liu, H., Liu, Z., Zhang, X.,    Zheng, X., and Liu, Q. FePt-Au ternary metallic    nanoparticles with the enhanced peroxidase-like activity    for ultrafast colorimetric detection of H2O2", Sens.    Actuators B., Chem., 259, pp. 775{783 (2018).    23. He, W., Wu, X., Liu, J., Hu, X., Zhang, K., Hou, S.,    Zhou, W., and Xie, S. Design of AgM bimetallic alloy    nanostructures (M= Au, Pd, Pt) with tunable morphology    and peroxidase-like activity", Chem. Mater.,    22(9), pp. 2988{2994 (2010).    24. Gao, M., Lu, X., Chi, M., Chen, S., and Wang,    C. Fabrication of oxidase-like hollow MnCo2O4    nano_bers and their sensitive colorimetric detection of    sul_te and l-cysteine", Inorg. Chem. Front., 4(11), pp.    1862{1869 (2017).    25. Dong, J., Song, L., Yin, J.J., He, W., Wu, Y., Gu,    N., and Zhang, Y. Co3O4 nanoparticles with multienzyme    activities and their application in immunohistochemical    assay", ACS Appl. Mater. Interfaces, 6(3),    pp. 1959{1970 (2014).    26. Yuan, F., Zhao, H., Zang, H., Ye, F., and Quan,    X. Three-dimensional graphene supported bimetallic    1376 M. Rahnamabaghy et al./Scientia Iranica, Transactions C: Chemistry and ... 28 (2021) 1366{1377    nanocomposites with DNA regulated-exibly switchable    peroxidase-like activity", ACS Appl. Mater. Interfaces,    8(15), pp. 9855{9864 (2016).    27. Wang, H., Li, S., Si, Y., Zhang, N., Sun, Z.,    Wu, H., and Lin, Y. Platinum nanocatalysts loaded    on graphene oxide-dispersed carbon nanotubes with    greatly enhanced peroxidase-like catalysis and electrocatalysis    activities", Nanoscale, 6(14), pp. 8107{8116    (2014).    28. Golchin, J., Golchin, K., Alidadian, N., Ghaderi, S.,    Eslamkhah, S., Eslamkhah, M., and Akbarzadeh, A.    Nanozyme applications in biology and medicine: an    overview", Artif. Cells Nanomed. Biotechnol., 45(6),    pp. 1069{1076 (2017).    29. Yang, B., Li, J., Deng, H., and Zhang, L. Progress    of mimetic enzymes and their applications in chemical    sensors", Crit. Rev. Anal. Chem., 46(6), pp. 469{481    (2016).    30. Wang, X., Hu, Y., and Wei, H. Nanozymes in    bionanotechnology: from sensing to therapeutics and    beyond", Inorg. Chem. Front., 3(1), pp. 41{60 (2016).    31. Wang, Q., Zhang, X., Huang, L., Zhang, Z., and Dong,    S. One-pot synthesis of Fe3O4 nanoparticle loaded    3D porous graphene nanocomposites with enhanced    nanozyme activity for glucose detection", ACS Appl.    Mat. Interfaces, 9(8), pp. 7465{7471 (2017).    32. Lin, L., Song, X., Chen, Y., Rong, M., Zhao, T., Wang,    Y., Jiang, Y., and Chen, X. Intrinsic peroxidase-like    catalytic activity of nitrogen-doped graphene quantum    dots and their application in the colorimetric detection    of H2O2 and glucose", Anal. Chim. Acta, 869, pp. 89{    95 (2015).    33. Li, W., Zhi, X., Yang, J., Zhang, J., and Fu, Y.    Colorimetric detection of cysteine and homocysteine    based on an oligonucleotide-stabilized Pd nanozyme",    Anal. Methods, 8(25), pp. 5111{5116 (2016).    34. Zhang, D., Chen, Z., Omar, H., Deng, L., and    Khashab, N.M. Colorimetric peroxidase mimetic assay    for uranyl detection in sea water", ACS Appl.    Mater. Interfaces, 7(8), pp. 4589{4594 (2015).    35. Sahoo, R., Santra, S., Ray, C., Pal, A., Negishi,    Y., Ray, S.K., and Pal, T. Hierarchical growth of    ZnFe2O4 for sensing applications", New J. Chem.,    40(2), pp. 1861{1871 (2016).    36. Jia, H., Yang, D., Han, X., Cai, J., Liu, H., and He, W.    Peroxidase-like activity of the Co3O4 nanoparticles    used for biodetection and evaluation of antioxidant    behavior", Nanoscale, 8(11), pp. 5938{5945 (2016).    37. Jin, C., Lu, F., Cao, X., Yang, Z., and Yang, R. Facile    synthesis and excellent electrochemical properties of    NiCo2O4 spinel nanowire arrays as a bifunctional catalyst    for the oxygen reduction and evolution reaction",    J. Mater. Chem. A, 1(39), pp. 12170{12177 (2013).    38. Vetr, F., Moradi-Shoeili, Z., and Ozkar, S. Mesoporous    MnCo2O4 with e_cient peroxidase mimetic activity    for detection of H2O2", Inorg. Chem. Commun.,    98, pp. 184{191 (2018).    39. Vetr, F., Moradi-Shoeili, Z., and Ozkar, S. Oxidation    of o-phenylenediamine to 2, 3-diaminophenazine in    the presence of cubic ferrites MFe2O4 (M= Mn, Co,    Ni, Zn) and the application in colorimetric detection    of H2O2", Appl. Organomet. Chem., 32(9), p. e4465    (2018).    40. Leal, E., Dantas, J., dos Santos, P.T.A., Bicalho,    S.M.D.C.M., Kiminami, R.H.G.A., da Silva, M.R.,    and de Melo Costa, A.C.F. E_ect of the surface    treatment on the structural, morphological, magnetic    and biological properties of MFe2O4 iron spinels (M=    Cu, Ni, Co, Mn and Fe)", Appl. Surf. Sci., 455, pp.    635{645 (2018).    41. Su, L., Qin, W., Zhang, H., Rahman, Z.U., Ren, C.,    Ma, S., and Chen, X. The peroxidase/catalase-like    activities of MFe2O4 (M= Mg, Ni, Cu) MNPs and    their application in colorimetric biosensing of glucose",    Biosens. Bioelectron., 63, pp. 384{391 (2015).    42. Wang, T., Su, P., Li, H., Yang, Y., and Yang, Y.    Triple-enzyme mimetic activity of Co3O4 nanotubes    and their applications in colorimetric sensing of glutathione",    New J. Chem., 40(12), pp. 10056{10063    (2016).    43. Zhu, X., Zhao, H., Niu, X., Liu, T., Shi, L. and Lan, M.    A comparative study of carbon nanotube supported    MFe2O4 spinels (M= Fe, Co, Mn) for amperometric    determination of H2O2 at neutral pH values", Microchim.    Acta, 183(8), pp. 2431{2439 (2016).    44. Hutchings, G.J., Mirzaei, A.A., Joyner, R.W., Siddiqui,    M.R.H., and Taylor, S.H. E_ect of preparation    conditions on the catalytic performance of copper    manganese oxide catalysts for CO oxidation", Appl.    Catal. A, 166(1), pp. 143{152 (1998).    45. Hall, B.D., Zanchet, D., and Ugarte, D. Estimating    nanoparticle size from di_raction measurements", J.    Appl. Crystallogr., 33(6), pp. 1335{1341(2000).    46. Saravanakumar, B., Lakshmi, S.M., Ravi, G., Ganesh,    V., Sakunthala, A., and Yuvakkumar, R. Electrochemical    properties of rice-like copper manganese oxide    (CuMn2O4) nanoparticles for pseudocapacitor applications",    J. Alloys Compd, 723, pp. 115{122 (2017).    47. Lin, T., Zhong, L., Song, Z., Guo, L., Wu, H., Guo,    Q., Chen, Y., Fu, F., and Chen, G. Visual detection    of blood glucose based on peroxidase-like activity of    WS2 nanosheets", Biosens. Bioelectron., 62, pp. 302{    307 (2014).    48. Guan, J., Peng, J., and Jin, X. Synthesis of copper    sul_de nanorods as peroxidase mimics for the    colorimetric detection of hydrogen peroxide", Anal.    Methods, 7(13), pp. 5454{5461 (2015).    49. Chen, W., Chen, J., Liu, A.L., Wang, L.M., Li, G.W.,    and Lin, X.H. Peroxidase-like activity of cupric oxide    nanoparticle", Chem. Cat. Chem., 3(7), pp. 1151{1154    (2011).    50. Maddinedi, S.B. and Mandal, B.K. Peroxidase    Like activity of quinic acid stabilized copper oxide    nanosheets", Austin J. Anal. Pharm. Chem., 1(2), p.    4 (2014).    M. Rahnamabaghy et al./Scientia Iranica, Transactions C: Chemistry and ... 28 (2021) 1366{1377 1377    51. Wang, X., Han, Q., Cai, S., Wang, T., Qi, C., Yang,    R., and Wang, C. Excellent peroxidase mimicking    property of CuO/Pt nanocomposites and their application    as an ascorbic acid sensor", Analyst, 142(13),    pp. 2500{2506 (2017).    52. Nimse, S.B. and Pal, D. Free radicals, natural antioxidants,    and their reaction mechanisms", Rsc Adv.,    5(35), pp. 27986{28006 (2015).    53. Shah, J., Purohit, R., Singh, R., Karakoti, A.S., and    Singh, S. ATP-enhanced peroxidase-like activity of    gold nanoparticles", J. Colloid. Interface Sci., 456, pp.    100{107 (2015).    54. Huang, W., Lin, T., Cao, Y., Lai, X., Peng, J.,    and Tu, J. Hierarchical NiCo2O4 hollow sphere as a    peroxidase mimetic for colorimetric detection of H2O2    and glucose", Sensors, 17(1), p. 217 (2017).    55. Chen, W., Cai, S., Ren, Q.Q., Wen, W., and Zhao,    Y.D. Recent advances in electrochemical sensing for    hydrogen peroxide: a review", Analyst, 137(1), pp.    49{58 (2012).    56. Pundir, C.S., Deswal, R., and Narwal, V. Quantitative    analysis of hydrogen peroxide with special emphasis    on biosensors", Bioproc. Biosyst. Eng., 41(3), pp.    313{329 (2018).    57. Rhee, S.G., Chang, T.S., Jeong, W., and Kang, D.    Methods for detection and measurement of hydrogen    peroxide inside and outside of cells", Mol. Cells, 29(6),    pp. 539{549 (2010).    58. Sun, Y., Wang, J., Li, W., Zhang, J., Zhang, Y.,    and Fu, Y. DNA-stabilized bimetallic nanozyme and    its application on colorimetric assay of biothiols",    Biosens. Bioelectron., 74, pp. 1038{1046 (2015).    59. Yang, Y.K., Shim, S., and Tae, J. Rhodamine-sugar    based turn-on uorescent probe for the detection of    cysteine and homocysteine in water", Chem. Commun.,    46(41), pp. 7766{7768 (2010).    60. Shahrokhian, S. Lead phthalocyanine as a selective    carrier for preparation of a cysteine-selective electrode",    Anal. Chem., 73(24), pp. 5972{5978 (2001).    61. Chen, Y., Chen, T., Wu, X., and Yang, G. CuMnO2    nanoakes as pH-switchable catalysts with multiple    enzyme-like activities for cysteine detection", Sens.    Actuators B, 279, pp. 374{384 (2019).    62. Chi, M., Zhu, Y., Jing, L., Wang, C., and Lu, X. Fabrication    of ternary MoS2-polypyrrole-Pd nanotubes as    peroxidase mimics with a synergistic e_ect and their    sensitive colorimetric detection of l-cysteine", Anal.    Chim. Acta, 1035, pp. 146{153 (2018).    63. Chen, S., Chi, M., Zhu, Y., Gao, M., Wang, C., and    Lu, X. A facile synthesis of superparamagnetic Fe3O4    nano_bers with superior peroxidase-like catalytic activity    for sensitive colorimetric detection of l-cysteine",    Appl. Surf. Sci., 440, pp. 237{244 (2018).    64. Li, Y., Zhang, Z., Tao, Z., Gao, X., Wang, S., and Liu,    Y. A Asp/Ce nanotube-based colorimetric nanosensor    for H2O2-free and enzyme-free detection of cysteine",    Talanta, 196, pp. 556{562 (2019).