Theoretical study of diffusional release of a dispersed solute from a hollow cylindrical polymeric matrix

Document Type : Article


Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran



An exact solution for the release kinetic of a solute from inside a hollow cylindrical polymeric matrix into an infinite medium has been developed, when the initial concentration of the solute (A) is greater than the solubility limit (Cs). A combination of analytical and numerical methods was used to calculate the solute concentration profile and the release rate. The model was developed for two different strategies: 1) the release medium is flowing through the hollow cylinder in which boundary layer may be neglected, 2) the release medium inside the hollow cylinder is stagnant and the boundary layer should be considered. The results indicated that the release profiles were close to the constant release rate after a typical burst release. Also, the release profile from a solid cylindrical matrix and a hollow cylinder was compared. The results indicated that the hollow cylindrical matrix is a promising carrier when zero-order release is desirable. The present model demonstrates the potential of the hollow cylindrical matrix as a suitable geometry for sustained drug delivery systems.


References    1. Kim, S.W., Petersen, R.V., and Feijen, J. Polymeric    drug delivery systems", Drug Design, 10, pp. 193{250    (2016).    2. Wen, N., Dong, Y., Song, R., et al. Zeroorder    release of gossypol improves its antifertility    e_ect and reduces its side e_ects simultaneously",    Biomacromolecules, 19, pp. 1918{1925 (2018). DOI:    10.1021/acs.biomac.7b01648    3. Feng, L., Milner, D.J., Xia, C., et al. Xenopus    laevis as a novel model to study long bone critical-size    defect repair by growth factor-mediated regeneration",    Tissue Engineering Part A., 17, pp. 691{701 (2010).    4. Moioli, E.K., Clark, P.A., Xin, X., et al. Matrices and    sca_olds for drug delivery in dental, oral and craniofacial    tissue engineering", Advanced Drug Delivery    Reviews, 59, pp. 308{324 (2007).    5. Geris, L., Andreykiv, A., Van Oosterwyck, H., et al.    Numerical simulation of tissue di_erentiation around    loaded titanium implants in a bone chamber", Journal    of Biomechanics, 37, pp. 763{769 (2004).    6. Shim, J.-H., Kim, S.E., Park, J.Y., et al. Threedimensional    printing of rhBMP-2-loaded sca_olds with    long-term delivery for enhanced bone regeneration in    a rabbit diaphyseal defect", Tissue Engineering Part    A., 20, pp. 1980{1992 (2014).    7. Koons, G.L. and Mikos, A.G. Progress in threedimensional    printing with growth factors", Journal of    Controlled Release, 295, pp. 50{59 (2019).    8. Huang, Y.C. and Yang, Y.T. E_ect of basic _-    broblast growth factor released from chitosan-fucoidan    nanoparticles on neurite extension", Journal of Tissue    Engineering and Regenerative Medicine, 10, pp. 418{    427 (2016).    9. Tarafder, S., Gulko, J., Kim, D., et al. E_ect of dose    and release rate of CTGF and TGF_3 on avascular    meniscus healing", Journal of Orthopaedic Research.,    7, pp. 1555{1562 (2019).    10. Carr, E.J. and Pontrelli, G. Modelling mass di_usion    for a multi-layer sphere immersed in a semi-in_nite    E. Jooybar et al./Scientia Iranica, Transactions C: Chemistry and ... 28 (2021) 1428{1435 1435    medium: Application to drug delivery", Mathematical    Biosciences, 303, pp. 1{9 (2018).    11. Abdekhodaie, M. and Cheng, Y.-L. Di_usional release    of a dispersed solute from a spherical polymer    matrix", Journal of Membrane Science, 115, pp. 171{    178 (1996).    12. Higuchi, T. Mechanism of sustained-action medication.    Theoretical analysis of rate of release of solid    drugs dispersed in solid matrices", Journal of Pharmaceutical    Sciences,52, pp. 1145{1149 (1963).    13. Jahromi, A.K., Shieh, H., and Saadatmand, M. Theoretical    study of di_usional release of a dispersed solute    from cylindrical polymeric matrix: A novel con_guration    for providing zero-order release pro_le", Applied    Mathematical Modelling, 73, pp. 136{145 (2019).    14. Ibarra, J.C., Helbling, I.M., and Luna, J.A. Mathematical    modeling of drug delivery from cylindrical    implantable devices", Mathematical Methods in the    Applied Sciences, 37, pp. 2677{2688 (2014).    15. Baker, R. and Lonsdale, H. Div. of organic coatings    and plastics preprints", ACS, 3, p. 229 (1976).    16. Paul, D.R. and McSpadden, S. Di_usional release of a    solute from a polymer matrix", Journal of Membrane    Science, 1, pp. 33{48 (1976).    17. Lee, P. Di_usional release of a solute from a polymeric    matrix-approximate analytical solutions", Journal of    Membrane Science, 7, pp. 255{275 (1980).    18. Lee, P. Controlled drug release from polymeric matrices    involving moving boundaries", in Controlled Release    of Pesticides and Pharmaceuticals, Ed: Springer,    pp. 39{48 (1981).    19. Langer, R., Hsieh, D.S., Rhine, W., et al. Control    of release kinetics of macromolecules from polymers",    Journal of Membrane Science, 7, pp. 333{350 (1980).    20. Zhou, Y. and Wu, X. Finite element analysis of    di_usional drug release from complex matrix systems.    I.: Complex geometries and composite structures",    Journal of Controlled Release, 49, pp. 277{288 (1997).    21. Khamene, Z.M. and Abdekhodaie, M.J. Di_usional    release of a dispersed solute from a cylindrical polymeric    matrix into an in_nite external volume", Applied    Mathematics and Computation, 259, pp. 676{685    (2015).    22. Wazwaz, A.-M., Partial Di_erential Equations and    Solitary Waves Theory, Springer Science & Business    Media (2010).