Heat-treated gilsonite as an efficient natural material for removing toluene: A Box-Behnken experimental design approach

Document Type : Article

Authors

1 Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, P.O. Box 14515-775, Iran

2 Research Institute of Petroleum Industry (RIPI), West Blvd Azadi Sport Complex, Tehran, P.O. Box 14665-1998, Iran

10.24200/sci.2021.55043.4043

Abstract

Heat-treated Gilsonite (HT-Gil) has been used for the adsorptive removal of toluene from wastewater. Characterization of the sample was carried out by utilizing appropriate standard test methods. The FT-IR spectrum indicates the presence of long aliphatic chains and aromatic rings. FE-SEM imaging is employed for investigating the surface morphology, the grain size of the sample and confirms the irregular shape of the HT-Gil with different particle size distributions. Determination of chemical properties and elemental composition of the sample was conducted according to several ASTM tests along with XRF analysis. Also, TGA experimental results revealed the thermal stability of the sample up to 350 °C. Optimization of adsorption parameters, including temperature (A: 5-45 °C), pH (B: 4-9), and contact time (C: 20-90 min) was performed by BBD. The results showed that the maximum adsorption capacity of 69.1% was achieved in the optimum condition containing 5 °C, pH 9, and 90 min. The spent adsorbent also has acceptable adsorption efficiency (62.12%) after four thermal regeneration cycles. Moreover, the results of equilibrium data were in accordance with the Freundlich isotherm model (R2 = 0.9531) and imply the non-uniformity of the adsorbent surface that is in line with those found previously in the literature.

Keywords


References
1. Jafari, S., Ghorbani-Shahna, F., Bahrami, A., et    al. Adsorptive removal of toluene and carbon tetrachloride    from gas phase using zeolitic imidazolate    framework-8: E_ects of synthesis method, particle size,    and pretreatment of the adsorbent", Microporous and    Mesoporous Materials, 268, pp. 58{68 (2018).    2. Su, J., Bae, J., Park, S., et al. Plasma-assisted    oxidation of toluene over Fe/zeolite catalyst in DBD    reactor using adsorption/desorption system", Catalysis    Communications, 113(May), pp. 36{40 (2018).    3. Niu, J., Qian, H., Liu, J., et al. Process    and mechanism of toluene oxidation using Cu1-    yMn2CeyOx/sepiolite prepared by the co-precipitation    method", Journal of Hazardous Materials, 357, pp.    332{340 (2018).    4. Cheng, Z., Chen, Z., Li, J., et al. Mesoporous    silica-pillared clays supported nanosized Co3O4-CeO2    for catalytic combustion of toluene", Applied Surface    Science, 459, pp. 32{39 (2018).    5. Shahzad, M., Razzak, S.A., Hossain, M.M., et al.    Catalytic oxidation of volatile organic compounds    (VOCs)-A review", Atmospheric Environment, 140,    pp. 117{134 (2016).    6. Wang, H., Lu, Y., Han, Y., et al. Enhanced catalytic    toluene oxidation by interaction between copper oxide    and manganese oxide in Cu-O-Mn/-Al2O3 catalysts",    Applied Surface Science, 420, pp. 260{266 (2017).    7. Feng, X., Guo, J., Wen, X., et al. Enhancing performance    of Co/CeO2 catalyst by Sr doping for catalytic    combustion of toluene", Applied Surface Science, 445,    pp. 145{153 (2018).    8. Luo, Y., Zheng, Y., Zuo, J., et al. Insights into    the high performance of Mn-Co oxides derived from    metal-organic frameworks for total toluene oxidation",    Journal of Hazardous Materials, 349(January), pp.    119{127 (2018).    9. Abri, R.G.F., Ag, V., Fabri, J., et al. Toluene", Ullmann's    Encyclopedia of Industrial Chemistry (2000).    10. Dizbay-onat, M., Floyd, E., Vaidya, U.K., et al.    Applicability of industrial sisal _ber waste derived    activated carbon for the adsorption of volatile organic    compounds (VOCs)", Fibers and Polymers, 19(4), pp.    805{811 (2018).    11. Kim, J.M.H., Lee, C.Y., Jerng, D.W., et al. Toluene    and acetaldehyde removal from air on to graphenebased    adsorbents with microsized pores", Journal of    Hazardous Materials, 344, pp. 458{465 (2018).    12. Wang, X., Ma, C., Xiao, J., et al. Benzene/    toluene/water vapor adsorption and selectivity of    novel C-PDA adsorbents with high uptakes of benzene    and toluene", Chemical Engineering Journal, 335, pp.    970{978 (2018).    13. Zhang, A.X., Yang, Y.Y., Song, L., et al. Enhanced    adsorption performance of gaseous toluene on defective    UiO-66 metal organic framework: Equilibrium and    kinetic studies", Journal of Hazardous Materials, 365,    pp. 597{605 (2019).    14. Yu, L., Wang, L., Xu, W., et al. Adsorption of VOCs    on reduced graphene oxide", Journal of Environmental    Sciences, 67, pp. 171{178 (2018).    15. Lalanne, F., Malhautier, L., Roux, J.-C., et al. Absorption    of a mixture of volatile organic compounds    (VOCs) in aqueous solutions of soluble cutting oil",    Bioresource Technology, 99(6), pp. 1699{1707 (2008).    16. Li, Y., Liu, F., Fan, Y., et al. Silver palladium    bimetallic core-shell structure catalyst supported on    TiO2 for toluene oxidation", Applied Surface Science,    462, pp. 207{212 (2018).    17. Wang, Q., Yeung, K.L., and Ba~nares, M.A. Ceria and    its related materials for VOC catalytic combustion: A    review", Catalysis Today, 356(1), pp. 141{154 (Oct.    2020).    18. Mamaghani, A.H., Haghighat, F., and Lee, C.S. Gas    phase adsorption of volatile organic compounds onto    titanium dioxide photocatalysts", Chemical Engineering    Journal, 337, pp. 60{73 (2018).    19. Belaissaoui, B., Le Moullec, Y., Favre, E., et al.    Energy e_ciency of a hybrid membrane/condensation    process for VOC (volatile organic compounds) recovery    from air: A generic approach", Energy, 95, pp. 291{    302 (2016).    20. Cheng, Y., He, H., Yang, C., et al. Challenges    and solutions for bio_ltration of hydrophobic volatile    organic compounds", Biotechnology Advances, 34(6),    pp. 1091{1102 (2016).    21. Qiao, N., He, C., Zhang, X., et al. Hollow mesoporous    silica materials with well-ordered cubic Ia3d    mesostructured shell for toluene adsorption", Journal    of Porous Materials, 26(1), pp. 59{68 (2019).    22. Baur, G.B., Beswick, O., Spring, J., et al. Activated    carbon _bers for e_cient VOC removal from diluted    streams: the role of surface functionalities", Adsorption,    21(4), pp. 255{264 (2015).    23. Kraus, M., Trommler, U., Holzer, F., et al. Competing    adsorption of toluene and water on various    zeolites", Chemical Engineering Journal, 351, pp. 356{    363 (2018).    A. Sa_arian Delkhosh et al./Scientia Iranica, Transactions C: Chemistry and ... 28 (2021) 1353{1365 1363    24. Sui, H., An, P., Li, X., et al. Removal and recovery    of o-xylene by silica gel using vacuum swing adsorption",    Chemical Engineering Journal, 316, pp. 232{    242 (2017).    25. Maleki, H. Recent advances in aerogels for environmental    remediation applications: A review", Chemical    Engineering Journal, 300, pp. 98{118 (2016).    26. Chen, D., Qu, Z., Sun, Y., et al. Adsorptiondesorption    behavior of gaseous formaldehyde on different    porous Al2O3 materials", Colloids and Surfaces    A: Physicochemical and Engineering Aspects, 441, pp.    433{440 (2014).    27. Chu, F., Zheng, Y., Wen, B., et al. Adsorption of    toluene with water on zeolitic imidazolate framework-    8/graphene oxide hybrid nanocomposites in a humid    atmosphere", RSC Advances, 8(5), pp. 2426{2432    (2018).    28. Liu, C., Cai, W., and Liu, L. Hydrothermal carbonization    synthesis of Al-pillared montmorillonite@    carbon composites as high performing toluene adsorbents",    Applied Clay Science, 162(June 2018), pp.    113{120 (2018).    29. Survey, U.G., Boden, T., and Tripp, B.T. Gilsonite    veins of the Uinta basin, Utah", Utah Report No. 141    (Salt Lake: Utah Geological Survey), p. 50 (2012).    30. Jahanian, H.R., Shafabakhsh, G.H., and Divandari, H.    Performance evaluation of Hot Mix Asphalt (HMA)    containing bitumen modi_ed with Gilsonite", Construction    and Building Materials, 131, pp. 156{164    (2017).    31. Helms, J.R., Kong, X., Salmon, E., et al. Structural    characterization of gilsonite bitumen by advanced nuclear    magnetic resonance spectroscopy and ultrahigh    resolution mass spectrometry revealing pyrrolic and    aromatic rings substituted with aliphatic chains", Organic    Geochemistry, 44, pp. 21{36 (2012).    32. Sutirman, Z.A., Sanagi, M.M., Karim, J.A., et    al. New crosslinked-chitosan graft poly (N-vinyl-2-    pyrrolidone) for the removal of Cu(II) ions from    aqueous solutions", International Journal of Biological    Macromolecules, 107, pp. 891{897 (2018).    33. Criado-Garc_a, L., Almofti, N., Arce, L., et al.    Photoionization-ion mobility spectrometer for nontargeted    screening analysis or for targeted analysis    coupling a Tenax TA column", Sensors and Actuators    B: Chemical, 235, pp. 370{377 (2016).    34. Deng, H., Pan, T., Zhang, Y., et al. Adsorptive    removal of toluene and dichloromethane from humid    exhaust on MFI, BEA and FAU zeolites: An experimental    and theoretical study", Chemical Engineering    Journal, 394(March), p. 124986 (2020).    35. Ding, E.X., Hussain, A., Ahmad, S., et al. Highperformance    transparent conducting _lms of long    single-walled carbon nanotubes synthesized from    toluene alone", Nano Research, 13(1), pp. 112{120    (2020).    36. Fang, P., Tang, Z.J.Z.X., Chen, X.B., et al. Experimental    study on the absorption of toluene from    exhaust gas by para_n/surfactant/water emulsion",    Journal of Chemistry, 2016, pp. 1{9 (2016).    37. Farsouni Eydi, E., Shariati, A., and Khosravi-Nikou,    M.R. Separation of BTEX compounds (benzene,    toluene, ethylbenzene and xylenes) from aqueous solutions    using adsorption process", Journal of Dispersion    Science and Technology, 40(3), pp. 453{463 (2019).    38. Jiang, N., Zhao, Y., Shang, K., et al. Degradation of    toluene by pulse-modulated multistage DBD plasma:    Key parameters optimization through response surface    methodology (RSM) and degradation pathway analysis",    Journal of Hazardous Materials, 393, p. 122365    (2020).    39. Tafreshi, N., Sharifnia, S., and Moradi Dehaghi, S.    Box-Behnken experimental design for optimization    of ammonia photocatalytic degradation by ZnO/Oak    charcoal composite", Process Safety and Environmental    Protection, 106, pp. 203{210 (2017).    40. Vahid, A., Qandalee, M., and Baniyaghoob, S. H2S    removal using ZnO/SBA-3: New synthesis route and    optimization of process parameters", Scientia Iranica,    Transactions C, Chemistry, Chemical Engineering,    24(6), pp. 3064{3073 (2017).    41. Yuan, Z., Xu, Z., Zhang, D., et al. Box-Behnken    design approach towards optimization of activated    carbon synthesized by co-pyrolysis of waste polyester    textiles and MgCl2", Applied Surface Science, 427, pp.    340{348 (2018).    42. Mourabet, M., El Rhilassi, A., El Boujaady, H., et    al. Removal of uoride from aqueous solution by    adsorption on apatitic tricalcium phosphate using Box-    Behnken design and desirability function", Applied    Surface Science, 258(10), pp. 4402{4410 (2012).    43. Hazrati, N., Abdouss, M., Vahid, A., et al. Removal of    H2S from crude oil via stripping followed by adsorption    using ZnO/MCM-41 and optimization of parameters",    International Journal of Environmental Science and    Technology, 11(4), pp. 997{1006 (2014).    44. Nciri, N., Song, S., Kim, N., et al. Chemical characterization    of gilsonite bitumen", Journal of Petroleum    & Environmental Biotechnology, 5(5), p. 1 (2014).    45. Javed, H., Luong, D.X., Lee, C.-G., et al. E_cient removal    of bisphenol-A by ultra-high surface area porous    activated carbon derived from asphalt", Carbon, 140,    pp. 441{448 (2018).    46. Nakhaei, M., Naderi, K., Akbari, A., et al. Moisture    resistance study on PE-wax and EBS-wax modi_ed    warm mix asphalt using chemical and mechanical procedures",    Construction and Building Materials, 189,    pp. 882{889 (2018).    47. Mirzaiyan, D., Ameri, M., Amini, A., et al. Evaluation    of the performance and temperature susceptibility    of gilsonite-and SBS-modi_ed asphalt binders", Construction    and Building Materials, 207, pp. 679{692    (2019).    1364 A. Sa_arian Delkhosh et al./Scientia Iranica, Transactions C: Chemistry and ... 28 (2021) 1353{1365    48. Pakdaman, E., Osfouri, S., Azin, R., et al. Synthesis    and characterization of hydrophilic gilsonite _ne particles    for improving water-based drilling mud properties",    Journal of Dispersion Science and Technology,    41(11), pp. 1633{1642 (2020).    49. Zhou, L., Huang, W., Zhang, Y., et al. Evaluation of    the adhesion and healing properties of modi_ed asphalt    binders", Construction and Building Materials, 251, p.    119026 (2020).    50. Naik, J., Rajput, R., and Singh, M.K. Development    and evaluation of ibuprofen loaded hydrophilic biocompatible    polymeric nanoparticles for the taste masking    and solubility enhancement", Bio. Nano. Science, pp.    1{11 (2020).    51. Akhtar, M., Saba, S., Arif, S., et al. E_cient    magnetoelectric dispersion in Ni and Co co-doped    BiFeO3 multiferroics", Physica B: Condensed Matter,    p. 412572 (2020).    52. Jalilov, A.S., Li, Y., Tian, J., et al. Ultra-high surface    area activated porous asphalt for CO2 capture through    competitive adsorption at high pressures", Advanced    Energy Materials, 7(1), p. 1600693 (2017).    53. Rajisha, K.R., Deepa, B., Pothan, L.A., et al. Thermomechanical    and spectroscopic characterization of    natural _bre composites", Interface Engineering of    Natural Fibre Composites for Maximum Performance,    pp. 241{274 (2011).    54. Ara_ujo, C.S.T., Almeida, I.L.S., Rezende, H.C., et    al. Elucidation of mechanism involved in adsorption    of Pb(II) onto lobeira fruit (Solanum lycocarpum)    using Langmuir, Freundlich and Temkin isotherms",    Microchemical Journal, 137, pp. 348{354 (2018).    55. Ahmed, I. and Jhung, S.H. Remarkable improvement    in adsorptive denitrogenation of model fossil fuels    with CuCl/activated carbon, prepared under ambient    condition", Chemical Engineering Journal, 279, pp.    327{334 (2015).    56. Ahmadi, M., Anvaripour, B., Khosravi-Nikou, M.R.,    et al. Selective denitrogenation of model fuel through    iron and chromium modi_ed microporous materials    (MSU-S)", Journal of Environmental Chemical Engineering,    5(1), pp. 849{860 (2017).    57. Senthil Kumar, P., Ramalingam, S., Senthamarai, C.,    et al. Adsorption of dye from aqueous solution by    cashew nut shell: Studies on equilibrium isotherm,    kinetics and thermodynamics of interactions", Desalination,    261(1{2), pp. 52{60 (2010).    58. Farzin Nejad, N., Shams, E., Amini, M.K., et al.    Ordered mesoporous carbon CMK-5 as a potential    sorbent for fuel desulfurization: Application to the removal    of dibenzothiophene and comparison with CMK-    3", Microporous and Mesoporous Materials, 168, pp.    239{246 (2013).    59. Yu, F., Ma, J., Wang, J., et al. Magnetic iron oxide    nanoparticles functionalized multi-walled carbon nanotubes    for toluene, ethylbenzene and xylene removal    from aqueous solution", Chemosphere, 146, pp. 162{    172 (2016).    60. Bina, B., Amin, M.M., Rashidi, A., et al. Water    and wastewater treatment from BTEX by carbon    nanotubes and nano-Fe", Water Resources, 41(6), pp.    719{727 (2014).    61. Anjum, H., Johari, K., Gnanasundaram, N., et al. A    review on adsorptive removal of oil pollutants (BTEX)    from wastewater using carbon nanotubes", Journal of    Molecular Liquids, 277, pp. 1005{1025 (2019).    62. Konggidinata, M.I., Chao, B., Lian, Q., et al. Equilibrium,    kinetic and thermodynamic studies for adsorption    of BTEX onto Ordered Mesoporous Carbon    (OMC)", Journal of Hazardous Materials, 336, pp.    249{259 (2017).    63. Aivalioti, M., Pothoulaki, D., Papoulias, P., et al.    Removal of BTEX, MTBE and TAME from aqueous    solutions by adsorption onto raw and thermally treated    lignite", Journal of Hazardous Materials, 207, pp.    136{146 (2012).    64. Jodeh, S., Ahmad, R., Suleiman, M., et al. Kinetics,    thermodynamics and adsorption of BTX removal from    aqueous solution via date-palm pits carbonization    using SPME/GC-MS", Journal of Materials and Environmental    Science, 6(10), pp. 2853{2870 (2015).    65. Daifullah, A.A.M.M. and Girgis, B.S. Impact of surface    characteristics of activated carbon on adsorption    of BTEX", Colloids and Surfaces A: Physicochemical    and Engineering Aspects, 214(1{3), pp. 181{193    (2003).    66. Carvalho, M.N., Da Motta, M., Benachour, M., et al.    Evaluation of BTEX and phenol removal from aqueous    solution by multi-solute adsorption onto smectite    organoclay", Journal of Hazardous Materials, 239, pp.    95{101 (2012).