The effect of silica/zeolite-A nanocomposite on the polyvinyl acetate wood adhesive

Document Type : Research Note


Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran



The silica/zeolite-A nanocomposite additive was loaded at different values (1 - 4% wt) into polyvinyl acetate matrix to improve its wood adhesive properties. The silica nanoparticles were prepared by calcination method using rice husk as source material. X-ray diffraction analysis, FTIR spectroscopy, and SEM techniques were used for the characterization of the nanocomposite. The thermal stability and adhesion properties of modified polyvinyl acetate were evaluated by thermogravimetric analysis (TGA) method and measuring the shear strength of wood joints respectively. According to the results, the addition of silica/zeolite-A nanocomposite into polyvinyl acetate in dry condition and elevated temperatures was led to the enhanced shear strength of wood joints. However, in wet conditions, improvement of shear strength which was obtained by the addition of silica/zeolite-A nanocomposite was lower than that of the dry condition. Additionally, the thermal stability of polyvinyl acetate was affected by silica/zeolite-A nanocomposite. Polyvinyl acetate containing silica/zeolite-A nanocomposite additive showed better stability in water with respect to the pristine polyvinyl acetate.


References         1. Tran, A., Mayr, M., Konnerth, J., et al. Adhesive         strength and micromechanics of wood bonded at low         temperature", International Journal of Adhesion and         Adhesives, 103, p. 102697 (2020).         2. Boussetta, A., Ait Benhamou, A., Barba, F.J., et al.         Experimental and theoretical investigations of ligninurea-         formaldehyde wood adhesive: Density functional         theory analysis", International Journal of Adhesion         and Adhesives, 104, p. 102737 (2021).         3. Addis, C.C., Koh, R.S., and Gordon, M.B. Preparation         and characterization of a bio-based polymeric         wood adhesive derived from linseed oil", International         Journal of Adhesion and Adhesives, 102, p. 102655         (2020).         4. Daneshvar, S., Behrooz, R., Naja_, S.K., et al. Characterization         of polyurethane wood adhesive prepared         from lique_ed sawdust by ethylene carbonate", BioResources,         14(1), pp. 796{815 (2019).         5. Ji, X. and Guo, M. Preparation and properties of a         chitosan-lignin wood adhesive", International Journal         of Adhesion and Adhesives, 82, pp. 8{13 (2018).         6. Xiong, H., Wang, Z., Chen, L., et al. E_ects of different         emulsi_ers on the bonding performance, freezethaw         stability and retrogradation behavior of the         resulting high amylose starch-based wood adhesive",         Colloids and Surfaces A: Physicochemical and Engineering         Aspects, 538, pp. 192{201 (2018).         7. Zhang, R., Jin, X., Wen, X., et al. Alumina nanoparticle         modi_ed phenol-formaldehyde resin as a wood         adhesive", International Journal of Adhesion and Adhesives,         81, pp. 79{82 (2018).         8. Khoramishad, H., Khakzad, M., and Fasihi, M. The         e_ect of outer diameter of multi-walled carbon nanotubes         on fracture behavior of epoxy adhesives", Scientia         Iranica, Transactions B, Mechanical Engineering,         24(6), pp. 2952{2962 (2017).         9. Jiang, W., Tomppo, L., Pakarinen, T., et al. E_ect of         cellulose nano_brils on the bond strength of polyvinyl         acetate and starch adhesives for wood", BioResources,         13(2), pp. 2283{2292 (2018).         10. Zhang, X., Bai, L., Sun, J., et al. Design and fabrication         of PVAc-based inverted core/shell (ICS) structured         adhesives for improved water-resistant wood         bonding performance: I. Inuence of chemical grafting",         International Journal of Adhesion and Adhesives,         98, p. 102522 (2020).         1960 A. Olad et al./Scientia Iranica, Transactions F: Nanotechnology 28 (2021) 1953{1961         11. Zhang, X., Bai, L., Sun, J., et al. Design and fabrication         of PVAc-based inverted core/shell (ICS) structured         adhesives for improved water-resistant wood         bonding performance: II. Inuence of copolymerizinggrafting         sequential reaction", International Journal of         Adhesion and Adhesives, 99, p. 102571 (2020).         12. Abdelghany, A.M., Meikhail, M.S., and Asker, N.         Synthesis and structural-biological correlation of         PVCnPVAc polymer blends", Journal of Materials         Research and Technology, 8, pp. 3908{3916 (2019).         13. Chiozza, F., Santoni, I., and Pizzo, B. Discoloration         of poly(vinyl acetate) (PVAc) gluelines in wood assemblies",         Polymer Degradation and Stability, 157, pp.         90{99 (2018).         14. Majumdar, S., Tokay, B., Martin-Gil, V., et al.         Mg-MOF-74/Polyvinyl acetate (PVAc) mixed matrix         membranes for CO2 separation", Separation and Puri         _cation Technology, 238, p. 116411 (2020).         15. Peruzzo, P.J., Bonnefond, A., Reyes, Y., et al.         Bene_cial in-situ incorporation of nanoclay to waterborne         PVAc/PVOH dispersion adhesives for wood         applications", International Journal of Adhesion and         Adhesives, 48, pp. 295{302 (2014).         16. Rindler, A., Poll, C., Hansmann, C., et al. Moisture         related elastic and viscoelastic behaviour of wood         adhesives by means of in-situ nanoindentation", International         Journal of Adhesion and Adhesives, 85, pp.         123{129 (2018).         17. Razavi, S.M.J., Ayatollahi, M.R., Giv, A.N., et al.         Single lap joints bonded with structural adhesives         reinforced with a mixture of silica nanoparticles and         multi walled carbon nanotubes", International Journal         of Adhesion and Adhesives, 80, pp. 76{86 (2018).         18. Chen, L., Xiong, Z., Xiong, H., et al. E_ects of nano-         TiO2 on bonding performance, structure stability and         _lm-forming properties of starch-g-VAc based wood         adhesive", Carbohydrate Polymers, 200, pp. 477{486         (2018).         19. Zhang, X., Liu, Z., Zhang, X., et al. High-adhesive         superhydrophobic litchi-like coatings fabricated by insitu         growth of nano-silica on polyethersulfone surface",         Chemical Engineering Journal, 343, pp. 699{707         (2018).         20. Liou, T.H. Preparation and characterization of nanostructured         silica from rice husk", Materials Science and         Engineering A, 364, pp. 313{323 (2004).         21. Olad, A. Polymer/clay nanocomposites; In advances         in diverse industrial applications of nanocomposites",         In Tech Publications, Chapter 7, pp. 113{138 (2011).         22. Hackett, E., Manias, E., and Giannelis, E.P.         Computer simulation studies of PEO/layer silicate         nanocomposites", Chemistry of Materials, 12, pp.         2161{2167 (2000).         23. Olad, A. and Naseri, B. Preparation, characterization         and anticorrosive properties of a novel polyaniline/         clinoptilolite nanocomposite", Progress of Organic         Coatings, 67, pp. 233{238 (2010).         24. He, J., Shen, Y., Yang, J., et al. Nanocomposite         structure based on silylated MCM-48 and poly(vinyl         acetate)", Chemistry Materials, 15, pp. 3894{3902         (2003).         25. Win, D.T. Zeolites - earliest solid state acids", AUJT,         11, pp. 36{41 (2012).         26. Nosrati, R., Olad, A., and Nofouzi, K. A self-cleaning         coating based on commercial grade polyacrylic latex         modi_ed by TiO2/Ag-exchanged-zeolite-A nanocomposite",         Applied Surface Science, 346, pp. 543{555         (2015).         27. Peter, A., Mihaly-Cozmuta, L., Mihaly-Cozmuta, A.,         et al. Calcium- and ammonium ion-modi_cation of zeolite         amendments a_ects the metal-uptake of Hieraciumpiloselloides         in a dose-dependent way", Journal of         Environmental Moniting, 14, pp. 2807{2814 (2012).         28. Nakane, K., Yamashita, T., Iwakura, K., et al.         Properties and structure of poly(vinyl alcohol)/silica         composites", Applied Polymer Science, 74, pp. 133{         138 (1999).         29. Prasad, R. and Pandey, M. Rice husk ash as a         renewable source for the production of value added         silica gel and its application: an overview", Bulletin         of Chemical Reaction Engineering Catalysis, 7, pp. 1{         25 (2012).         30. O'Neill, C., Beving, D.E., Chen, W., et al. Durability         of hydrophilic and antimicrobial zeolite coatings under         water immersion", AIChE Journal, 52, pp. 1157{1161         (2006).         31. Nosrati, R. and Olad, A. The e_ect of TiO2/aluminosilicate         nanocomposite additives on the mechanical         and thermal properties of polyacrylic coatings", Applied         Surface Science, 357, pp. 376{384 (2015).         32. Gharekhani, H., Olad, A., Mirmohseni, A., et al. Superabsorbent         hydrogel made of NaAlg-g-poly(AA-co-         AAm) and rice husk ash: Synthesis, characterization,         and swelling kinetic studies", Carbohydrate Polymer,         168, pp. 1{13 (2017).