References:
1. Buch, D.H. and Bhatt, H.S. "Trinetra: A solution to handle cross-VM time-driven attack", SN Applied Sciences, 2(4), pp. 1-12 (2020).
2. Yarom, Y., Genkin, D., and Heninger, N. "CacheBleed: a timing attack on OpenSSL constant-time RSA", Journal of Cryptographic Engineering, 7(2), pp. 99- 112 (2017).
3. Gotzfried, J., Eckert, M., Schinzel, S., et al. "Cache attacks on Intel SGX", Proceedings of the 10th European Workshop on Systems Security, pp. 1-6 (2017).
4. Xinliang, M., Liehui, J., and Rui, C. "Survey of accessdriven cache-based side channel attack", Journal of Computer Research and Development, 57(4), p. 824 (2020).
5. Schwarz, M. "Software-based Side-Channel Attacks and Defenses in Restricted Environments", Doctoral Dissertation, PhD Thesis, Graz University of Technology (2019).
6. Chen, S., Liu, F., Rui, C., et al. "Leveraging hardware transactional memory for cache side-channel defenses", Proceedings of the 2018 on Asia Conference on Computer and Communications Security, pp. 601-608 (2018).
7. Chattopadhyay, S., Beck, M., Rezine, A., et al. "Quantifying the information leakage in cache attacks via symbolic execution", ACM Transactions on Embedded Computing Systems (TECS), 18(1), pp. 1-27 (2019).
8. Lapid, B. and Wool, A. "Navigating the Samsung trustzone and cache-attacks on the keymaster trustM. let", European Symposium on Research in Computer Security, pp. 175-196 (2018).
9. Ge, Q., Yarom, Y., Cock, D., et al. "A survey of microarchitectural timing attacks and countermeasures on contemporary hardware", Journal of Cryptographic Engineering, 8(1), pp. 1-27 (2018).
10. Hu, W.M. "Lattice scheduling and covert channels", Proceedings 1992 IEEE Computer Society Symposium on Research in Security and Privacy, pp. 52-61 (1992).
11. Kelsey, J., Schneier, B., Wagner, D., et al. "Side channel cryptanalysis of product ciphers", European Symposium on Research in Computer Security, pp. 97- 110 (1998).
12. Tsunoo, Y., Saito, T., Suzaki, T., et al. "Cryptanalysis of DES implemented on computers with cache", International Workshop on Cryptographic Hardware and Embedded Systems, pp. 62-76 (2003).
13. Bernstein, D.J., Cache-timing Attacks on AES (2005).
14. Acicmez, O., Schindler, W., and Koc, C .K. "Cache based remote timing attack on the AES", Cryptographers' Track at the RSA Conference, pp. 271-286 (2007).
15. Neve, M., Seifert, J., and Wang, Z. "A refined look at Bernstein's AES side-channel analysis", Proceedings of the 2006 ACM Symposium on Information, Computer and Communications Security, pp. 369-369 (2006).
16. Percival, C. "Cache missing for fun and profit", BSDCan. (2006).
17. Yarom, Y. and Falkner, K. "FLUSH+ RELOAD: a high resolution, low noise, L3 cache sidechannel attack", 23rd fUSENIXg Security Symposium (fUSENIXg Security 14), pp. 719-732 (2014).
18. Ronen, E., Paterson, K.G., and Shamir, A. "Pseudo constant time implementations of TLS are only pseudo secure", Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security., pp. 1397-1414 (2018).
19. Ronen, E., Gillham, R., Genkin, D., et al. "The 9 lives of Bleichenbacher's CAT: New cache attacks on TLS implementations", 2019 IEEE Symposium on Security and Privacy (SP), pp. 435-452 (2019).
20. Inci, M.S., Gulmezoglu, B., Irazoqui, G., et al. "Cache attacks enable bulk key recovery on the cloud", International Conference on Cryptographic Hardware and Embedded Systems, pp. 368-388 (2016).
21. Irazoqui, G., Inci, M.S., Eisenbarth, T., et al. "Wait a minute! A fast, cross-VM attack on AES", International Workshop on Recent Advances in Intrusion Detection, pp. 299-319 (2014).
22. Gulmezoglu, B., Inci, M.S., Irazoqui, G., et al. "A faster and more realistic ush+ reload attack on AES", International Workshop on Constructive Side-Channel Analysis and Secure Design, pp. 111-126 (2015).
23. Gruss, D., Spreitzer, R., and Mangard, S. "Cache template attacks: Automating attacks on inclusive lastlevel caches", 24th fUSENIXg Security Symposium (fUSENIXg Security 15), pp. 897-912 (2015).
24. Ge, Q., Yarom, Y., Li, F., et al. "Contemporary processors are leaky and there is nothing you can do about it", The Computing Research Repository. arXiv (2016).
25. Gruss, D., Maurice, C., and Mangard, S. "Rowhammer. js: A remote software-induced fault attack in javascript", International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, pp. 300-321 (2016).
26. Irazoqui, G. and Guo, X. "Cache Side Channel Attack: Exploitability and Countermeasures", Black Hat Asia, 2017(3), pp. 1-72 (2017).
27. Saileshwar, G. and Qureshi, M.K., Lookout for Zombies: Mitigating Flush+ Reload Attack on Shared Caches by Monitoring Invalidated Lines, arXiv Preprint arXiv:1906.02362 (2017).
28. Lipp, M., Schwarz, M., Gruss, D., et al., Meltdown, arXiv Preprint arXiv:1801.01207 (2018).
29. Schwarz, M., Schwarzl, M., Lipp, M., et al. "Netspectre: Read arbitrary memory over network", European Symposium on Research in Computer Security, pp. 279-299 (2019).
30. Kocher, P., Horn, J., Fogh, A., et al. "Spectre attacks: Exploiting speculative execution", 2019 IEEE Symposium on Security and Privacy (SP), pp. 1-19 (2019).
31. Minkin, M., Moghimi, D., Lipp, M., et al., Fallout: Reading Kernel Writes from User Space, arXiv Preprint arXiv:1905.12701 (2019).
32. Seddigh, M. and Soleimany, H. "Enhanced Flush+ Reload Attack on AES", ISeCure, 12(2), pp. 81-89 (2020).
33. Daemen, J. and Rijmen, V., The Design of Rijndael: AES-the Advanced Encryption Standard, Springer Science & Business Media (2013).
34. Rebeiro, C., Mukhopadhyay, D., and Bhattacharya, S., Timing Channels in Cryptography: A Micro- Architectural Perspective, Springer (2014).