Entropy generation optimization and activation energy in flow of Walters-B nanomaterial

Document Type : Article


1 Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan

2 - Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan. - Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

3 Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia



In present research, we concentrated on the characterization of Walters-B nanofluid flow to investigate the irreversibility mechanism. Energy equation incorporated with radiation effects and heat generation phenomena. Influence of activation energy is discussed using modified Arrhenius energy term along binary chemical reaction. The consequences of thermophoresis, Brownian motion and viscous dissipation on fluids velocity, temperature of fluid particles and concentration of involved chemical species. Set of ordinary differential equations are obtained by implementing appropriate similarity variables. Governing mathematical model is solved using homotopy analysis method. Flow behavior is analyzed through Nusselt number, coefficient of drag force and mass transfer rate.


References        1. Choi, S.U.S. Enhancing thermal conductivity of uids        with nanoparticles", ASME-Publications-Fed, 231, pp.        99{106 (1995).        2. Waini, I., Ishak, A., and Pop, I. Hybrid nanouid        ow and heat transfer over a nonlinear permeable        stretching/shrinking surface", Int. J. Numerical Meth.        Heat & Fluid Flow, 29(9), pp. 3110{3127 (2019).        3. Sheikholeslami, M. Numerical approach for MHD Al2        O3 -water nanouid transportation inside a permeable        medium using innovative computer method", Comp.        Meth. Appl. Mech. Eng., 344, pp. 306{318 (2019).        4. Aly, E.H. Dual exact solutions of graphene-water        nanouid ow over stretching/shrinking sheet with        suction/injection and heat source/sink: Critical values        and regions with stability", Powder Tech., 342, pp.        528{544 (2019).        5. Ra_q, T., Mustafa, M., and Khan J.A. Numerical        study of Bodewadt slip ow on a convectively heated        porous disk in a nanouid", Phys. Scr., 94(9), 095701        (2019).        6. Hsiao, K.L. Micropolar nanouid ow with MHD        and viscous dissipation e_ects towards a stretching        sheet with multimedia feature", Int. J. Heat and Mass        Transf., 112, pp. 983{990 (2017).        7. Turkyilmazoglu, M. MHD natural convection in saturated        porous media with heat generation/absorption        and thermal radiation: closed-form solutions", Archi.        Mech., 71, pp. 49{64 (2019).        8. Ramzan, M., Bilal, M., and Chung, J.D. E_ects of        thermal and solutal strati_cation on Je_rey magnetonano        uid along an inclined stretching cylinder with        thermal radiation and heat generation/absorption",        Int. J. Mech. Sci., 132, pp. 317{324 (2017).        9. Hsiao, K.L. To promote radiation electrical MHD        activation energy thermal extrusion manufacturing        system e_ciency by using Carreau-nanouid with parameters        control method", Energy, 130, pp. 486{499        (2017).        10. Mustafa, M., Khan, J.A., Hayat, T., et al. Buoyancy        e_ects on the MHD nanouid ow past a vertical        surface with chemical reaction and activation energy",        Int. J. Heat and Mass Transf., 108, pp. 1340{1346        (2017).        11. Hsiao, K.L. Stagnation electrical MHD nanouid        mixed convection with slip boundary on a stretching        sheet", Appl. Therm. Eng., 98, pp. 850{861 (2016).        12. Bejan, A. A study of entropy generation in fundamental        convective heat transfer", ASME J. Heat Transfer,        101(4), pp. 718{725 (1979).        13. Bejan, A. and Kestin, J. Entropy generation through        heat and uid ow", J. Appl. Mech., 50(2), p. 475        (1983).        14. Liu, Y., Jian, Y., and Tan, W. Entropy generation        of electromagnetohydrodynamic (EMHD) ow in a        curved rectangular microchannel", Int. J. Heat Mass        Transf., 127, pp. 901{913 (2018).        15. Qayyum, S., Khan, M.I., Hayat, T., et al. Entropy        generation in dissipative ow of Williamson uid between        two rotating disks", Int. J. Heat Mass and        Transf., 127, pp. 933{942 (2018).        16. Akbarzadeh, M., Rashidi, S., and Karimi, N. Convection        of heat and thermodynamic irreversibilities in        two-phase, turbulent nanouid ows in solar heaters        by corrugated absorber plates", Adv. Powder Techn.,        29, pp. 2243{2254 (2018).        S. Jabeen et al./Scientia Iranica, Transactions F: Nanotechnology 28 (2021) 1917{1925 1925        17. Bizhaem, H.K. and Abbassi, A. Numerical study on        heat transfer and entropy generation of developing        laminar nanouid ow in helical tube using two-phase        mixture model", Adv. Powder Techn., 28(9) pp. 2110{        2125 (2017).        18. Pal, S.K., Bhattacharyya, S., and Pop, I. E_ect of        solid-to-uid conductivity ratio on mixed convection        and entropy generation of a nanouid in a lid-driven        enclosure with a thick wavy wall", Int. J. Heat and        Mass Transf., 127, pp. 885{900 (2018).        19. Sheikholeslami, M. and Ganji, D.D. Entropy generation        of nanouid in presence of magnetic _eld using        lattice Boltzmann method", Physica A, 417, pp. 273{        286 (2015).        20. Wang, Y., Chen, Z., and Ling, X. Entropy generation        analysis of particle suspension induced by Couette        ow", Int. J. Heat Mass Transf., 90, pp. 499{504        (2015).        21. Hayat, T., Khan, M.I., Qayyum, S., et al. Entropy        generation for ow of Sisko uid due to rotating disk",        J. Mol. Liq., 264, pp. 375{385 (2018).        22. Liao, S.J., Homotopy Analysis Method in Non-linear        Di_erential Equations, Springer and Higher Education        Press, Heidelberg (2012).        23. Noeiaghdam, S., Zarei, E., and Kelishami, H.B. Homotopy        analysis transform method for solving Abel's        integral equations of the _rst kind", Ain Shams Eng.        J., 7, pp. 483{495 (2016).        24. Hayat, T., Mustafa, M., and Asghar, S. Unsteady        ow with heat and mass transfer of a third grade        uid over a stretching surface in the presence of        chemical reaction", Nonlinear Analysis: Real World        Appl., 11(4), pp. 3186{3197 (2010).        25. Rahman, S., Hayat, T., Muneer, M., et al. Global existence        of solutions for MHD third grade ow equations        saturating porous medium", Comput. Math. Appl., 76,        pp. 2360{2374 (2018).        26. Jabeen, S., Hayat, T., Alsaedi, A., et al. Consequences        of activation energy and chemical reaction        in radiative ow of tangent hyperbolic nanoliquid",        Scientia Iranica, 26(6), pp. 3928{3937 (2019). DOI:        10.24200/SCI.2019.52726.2860        27. Imtiaz, M., Kiran, A., Hayat, T., et al. Axisymmetric        ow by a rotating disk with Cattaneo-Christov heat        ux", J. Braz. Soc. Mec. Sci. Eng., 41, p. 149 (2019).        28. Hayat, T., Ahmad, S., Khan, M.I., et al. Modeling        and analyzing ow of third grade nanouid due to        rotating stretchable disk with chemical reaction and        heat source", Physica B: Cond. Matt., 537, pp. 116{        126 (2018).        29. Abbasbandy, S. and Mustafa, M. Analytical and        numerical approaches for Falkner-Skan ow of MHD        Maxwell uid using a non-Fourier heat ux model",        Int. J. Num. Meth. Heat & Fluid Flow, 28, pp.1539{        1555 (2018).        30. Turkyilmazoglu, M. Convergence accelerating in the        homotopy analysis method: a new approach", Adv.        Appl. Math. Mech., 10, pp. 1{24 (2018).        31. Hayat, T., Qayyum, S., Khan, M.I., et al. Entropy        generation in magnetohydrodynamic radiative ow due        to rotating disk in presence of viscous dissipation and        Joule heating", Phys. Fluids, 30 p. 017101 (2018).        32. Qayyum, S., Hayat, T., and Jabeen, S. Entropy        generation in nanouid ow of Walters-B uid with        homogeneous-heterogeneous reactions", Math. Meth.        Appl. Sci., pp. 1{16 (2020).        https://doi.org/10.1002/mma.5997        33. Hsiao, K.L. Combined electrical MHD heat transfer        thermal extrusion system using Maxwell uid with radiative        and viscous dissipation e_ects", Appl. Therm.        Eng., 112, pp. 1281{1288 (2017).        34. Turkyilmazoglu, M. Multiple analytic solutions of        heat and mass transfer of magnetohydrodynamic slip        ow for two types of viscoelastic uids over a stretching        surface", J. Heat Transfer, 134(7), p. 071701 (2012).        35. Turkyilmazoglu, M. An e_ective approach for approximate        analytical solutions of the damped Du_ng        equation", Phy. Scrip., 86(1), p. 015301 (2012).