Theoretical studies on photo-induced electron transfer process on [Thioridazine].C60 nano-complex; a first principle DFT and TD-DFT

Document Type : Article

Authors

1 - Faculty of Chemistry, Razi University, Kermanshah, P.O. Box 6714967346, Iran. - Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran

2 Faculty of Chemistry, Razi University, Kermanshah, P.O. Box 6714967346, Iran

3 Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran

10.24200/sci.2020.53361.3203

Abstract

In this study, using the density functional theory (DFT) and time dependent density functional theory (TD-DFT) methods, the physical and chemical properties of the Thioridazineand fullerene C60 nano complex were studied. The most important goal was increasing C60 dipolar moment as a novel drug delivery system to carry Thioridazineand. Several descriptors were used in the ground state, including electrochemical properties based on the HOMO and LUMO orbital energy, hardness, softness, chemical potential, and Mulliken charge. The dipole moment of this nano-complex is about 2.61D, which indicates its moderate solubility in polar solvents. The UV-Vis spectrum obtained with the CAM-B3LYP method shows that the absorption spectrum has blue-shifted by about λ = 24 nm after formation of the complex. Based on the calculations in the excited state and the hole-electron theory in the first three modes, a photo-induced electron transfer (PET) phenomenon was observed at different absorption wavelengths for the complex. Using the Marcus theory of electron transfer, the free energy of activation for electron transfer and the free energy of electron transfer for all PETs were calculated.

Keywords


References
 1. Chien, Y., Novel Drug Delivery Systems, Informa   Health Care, (1991).   2. Freeman, A.I. and Mayhew, E. Targeted drug delivery",   Cancer, 58, pp. 573{583 (1986).   3. Mills, J.K. and Needham, D. Targeted drug delivery",   Expert Opinion on Therapeutic Patents, 9, pp. 1499{   1513 (1999).   4. Allen, T.M. and Cullis, P.R. Drug delivery systems:   entering the mainstream", Science, 303, pp. 1818{   1822 (2004).   5. Singh, R. and Lillard, J.W. Nanoparticle-based targeted   drug delivery", Exp. Mol. Pathol, 86, pp. 215{   223 (2009).   6. Sun, X., Liu, Z., Welsher, K., et al. Nano-graphene   oxide for cellular imaging and drug delivery", Nano   Research, 1, pp. 203{212 (2008).   7. Mishra, B., Patel, B.B., and Tiwari, S. Colloidal   nanocarriers: a review on formulation technology,   types and applications toward targeted drug delivery",   Nanomed. Nanotechnol. Biol. Med., 6, pp. 9{24 (2010).   1350 A.A. Taherpour et al./Scientia Iranica, Transactions C: Chemistry and ... 28 (2021) 1343{1352   8. Koo, O.M., Rubinstein, I., and Onyuksel, H. Role of   nanotechnology in targeted drug delivery and imaging:   a concise review", Nanomed. Nanotechnol. Biol. Med,   1, pp. 193{212 (2005).   9. Nasongkla, N., Bey, E., Ren, J., et al. Multifunctional   polymeric micelles as cancer-targeted, MRIultrasensitive   drug delivery systems", Nano Letters, 6,   pp. 2427{2430 (2006).   10. Kropp, H., Sundelof, J.G., Hajdu, R., and Kahan,   F.M. Metabolism of thienamycin and related   carbapenem antibiotics by the renal dipeptidase",   Dehydropeptidase-I, Antimicrobial Agents and   Chemotherapy, 22, pp. 62{70 (1982).   11. Price-Whelan, A., Dietrich, L.E., and Newman, D.K.   Rethinking' secondary' metabolism: physiological   roles for phenazine antibiotics", Nat. Chem. Biol, 2,   p. 71 (2006).   12. Jurima-Romet, M., Crawford, K., Cyr, T., et al. Terfenadine   metabolism in human liver. In vitro inhibition   by macrolide antibiotics and azole antifungals", Drug   Metab. Disposition, 22, pp. 849{857 (1994).   13. Farokhzad, O.C. and Langer, R. Impact of nanotechnology   on drug delivery", Acs Nano, 3, pp. 16{20   (2009).   14. Shi, J., Votruba, A.R., Farokhzad, O.C., and Langer,   R. Nanotechnology in drug delivery and tissue engineering:   from discovery to applications", Nano Letters,   10, pp. 3223{3230 (2010).   15. Taherpour, A.A., Zolfaghar, N., Jamshidi, M., Jalilian,   J., et al. Structural distortions of fullerene C60n   (n = 0 to {6) by _rst principle density functional   theory", Journal of Molecular Structure, 1184, pp.   546{556 (2019).   16. Bianco, A., Kostarelos, K., and Prato, M. Applications   of carbon nanotubes in drug delivery", Curr.   Opin. Chem., Biol., 9, pp. 674{679 (2005).   17. Liu, Z., Chen, K., Davis, C., et al. Drug delivery   with carbon nanotubes for in vivo cancer treatment",   Cancer Res., 68, pp. 6652{6660 (2008).   18. Hughes, G.A. Nanostructure-mediated drug delivery",   Nanomed. Nanotechnol. Biol. Med., 1, pp. 22{30   (2005).   19. Cataldo, F. and Da Ros, T., Medicinal Chemistry and   Pharmacological Potential of Fullerenes and Carbon   Nanotubes, Springer Science & Business Media (2008).   20. Bakry, R., Vallant, R.M., Najam-ul-Haq, M., et al.   Medicinal applications of fullerenes", International   Journal of Nanomedicine, 2, p. 639 (2007).   21. Harhaji, L., Isakovic, A., Raicevic, N., et al. Multiple   mechanisms underlying the anticancer action of   nanocrystalline fullerene", Eur. J. Pharmacol, 568,   pp. 89{98 (2007).   22. Brunet, L.N., Lyon, D.Y., Hotze, E.M., et al. Comparative   photoactivity and antibacterial properties of   C60 fullerenes and titanium dioxide nanoparticles",   Environmental Science & Technology, 43, pp. 4355{   4360 (2009).   23. Lyon, D.Y., Adams, L.K., Falkner, J.C., et al.   Antibacterial activity of fullerene water suspensions:   e_ects of preparation method and particle size", Environmental   Science & Technology, 40, pp. 4360{4366   (2006).   24. Erb, T., Zhokhavets, U., Gobsch, U., et al. Correlation   between structural and optical properties of   composite polymer/fullerene _lms for organic solar   cells", Adv. Funct. Mater., 15, pp. 1193{1196 (2005).   25. Scharber, M., Schultz, N., Sariciftci, N., et al.   Optical- and photocurrent-detected magnetic resonance   studies on conjugated polymer/fullerene composites",   Physical Review B, 67, p. 085202 (2003).   26. Hosseinian, A., Vessally, E., Yahyaei, S., et al. A   density functional theory study on the interaction   between 5-uorouracil drug and C24 fullerene", J.   Clust. Sci., 28, pp. 2681{2692 (2017).   27. Samanta, P.N., and Das, N.N. Noncovalent interaction   assisted fullerene for the transportation of some   brain anticancer drugs: A theoretical study", Journal   of Molecular Graphics and Modelling, 72, pp. 187{200   (2017).   28. Gong, P., Zhang, L., Yuan, X.A., et al. Multifunctional   uorescent PEGylated uorinated graphene   for targeted drug delivery: An experiment and DFT   study", Dyes and Pigments, 162, pp. 573{582 (2019).   29. Teixeira, T.A.R., Costa, L.A.S., and Sant'Ana, A.C.   A proposal for the adsorption of anastrozole anticancer   drug on gold nanoparticle surfaces", Journal   of Raman Spectroscopy, 50(10), pp. 1462{1467 (2019).   30. Taherpour, A.A., Jamshidi, M., and Rezaei, O. DFT   and TD-DFT theoretical studies on photo-induced   electron transfer process on [Cefamandole]. C60 nanocomplex",   Journal of Molecular Graphics and Modelling,   75, pp. 42{48 (2017).   31. Wazzan, N. and Sa_, Z. DFT calculations of the   tautomerization and NLO properties of 5-amino-   7-(pyrrolidin-1-yl)-2,4,4-trimethyl-1,4-dihydro-1,6-   naphthyridine-8-carbonitrile (APNC)", Journal of   Molecular Structure, 1143, pp. 397{404 (2017).   32. Jamshidi, M., Rezaei, O., Belverdi, A.R., et al. A   highly selective uorescent chemosensor for Mg 2+   ion in aqueous solution using density function theory   calculations", Journal of Molecular Structure, 1123,   pp. 111{115 (2016).   33. An, B., Yuan, H., Zhu, Q., et al. Theoretical insight   into the excited-state intramolecular proton transfer   mechanisms of three amino-type hydrogen-bonding   molecules", Spectrochimica Acta Part A: Molecular   and Biomolecular Spectroscopy, 175, pp. 36{42 (2017).   34. Yuan, H., Feng, S., Wen, K., et al. A quantumchemical   insight into the tunable uorescence color   and distinct photoisomerization mechanisms between   a novel ESIPT uorophore and its protonated form",   Spectrochimica Acta Part A: Molecular and Biomolecular   Spectroscopy, 183, pp. 123{130 (2017).   A.A. Taherpour et al./Scientia Iranica, Transactions C: Chemistry and ... 28 (2021) 1343{1352 1351   35. Taherpour, A.A., Jamshidi, M., and Rezaei, O.   Recognition of switching on or o_ uorescence emission   spectrum on the Schi_-bases as a Mg2+ chemosensor:   A _rst principle DFT and TD-DFT study",   Journal of Molecular Structure, 1147, pp. 815{820   (2017).   36. Harriman, A., Kubo, Y., and Sessler, J.L. Molecular   recognition via base pairing: photoinduced electron   transfer in hydrogen-bonded zinc porphyrinbenzoquinone   conjugates", Journal of the American   Chemical Society, 114, pp. 388{390 (1992).   37. Reisner, E., Arion, V.B., Keppler, B.K., et al.   Electron-transfer activated metal-based anticancer   drugs", Inorg. Chim. Acta, 361, pp. 1569{1583 (2008).   38. Taherpour, A.A. Theoretical and quantitative structural   relationship study of the electrochemical properties   of [M2@ C x]@[SWCNT (5, 5)-Armchair-C n H20]   (M=Er and Sc, x = 82 and 84, and n = 20 􀀀 300)   complexes", The Journal of Physical Chemistry C,   113, pp. 5402{5408 (2009).   39. Carlsson, A., Roos, B.E., W_alinder, J., et al. Further   studies on the mechanism of antipsychotic action: Potentiation   by _-methyltyrosine of thioridazine e_ects   in chronic schizophrenics", J. Neural Transm, 34, pp.   125{132 (1973).   40. Gholivand, K., Hosseini, M., Maghsoud, Y., et al.   Relations between structural and luminescence properties   of novel lanthanide nitrate complexes with bisphosphoramidate   ligands, inorganic chemistry", Inorg.   Chem., 58(9), pp. 5630{5645 (2019).   41. Patel, R.N. and Singh, Y.P. Synthesis, structural   characterization, DFT studies and in-vitro antidiabetic   activity of new mixed ligand oxovanadium(IV) complex   with tridentate Schi_ base", Journal of Molecular   Structure, 1153, pp. 162{169 (2018).   42. Zara, Z., Iqbal, J., Ayub, K., et al. A comparative   study of DFT calculated and experimental UV/Visible   spectra for thirty carboline and carbazole based compounds",   Journal of Molecular Structure, 1149, pp.   282{298 (2017).   43. Ahmadi, R. Study of thermodynamic parameters of   (TATB) and its fullerene derivatives with di_erent   number of Carbon (C20, C24, C60), in di_erent   conditions of temperature, using density functional   theory", International Journal of Nano Dimension, 8,   pp. 250{256 (2017).   44. Srivastava, A.K., Kumar, A., and Misra, N. Superalkali@   C60- superhalogen: Structure and nonlinear   optical properties of a new class of endofullerene   complexes", Chemical Physics Letters, 682, pp. 20{25   (2017).   45. Sutradhar, S. and Patnaik, A. A new fullerene-   C60-nanogold composite for non-enzymatic glucose   sensing", Sensors and Actuators B: Chemical, 241, pp.   681{689 (2017).   46. Dhiman, S., Kumar, R., and Dharamvir, K. DFT   study of Cu and Ag clusters inside C60", Journal of   Molecular Structure, 1100, pp. 328{337 (2015).   47. Taherpour, A.A., Jamshidi, M., Rezaei, O., et al.   Photoinduced electron transfer process on emission   spectrum of N,N0-bis(salicylidene)-1,2- phenylenediamine   as a Mg2+ cation chemosensor: A _rst principle   DFT and TDDFT study", Journal of Molecular   Structure, 1161, pp. 339{344 (2018).   48. Taherpour, A.A., Shahri, Z., Rezaei, O., et al. Adsorption,   intercalation and sensing of helium on yttrium   functionalized open edge boron nitride: A _rst   principle DFT and TDDFT study", Chemical Physics   Letters, 691, pp. 231{237 (2018).   49. Wagner, F.R., Bezugly, V., Kohout, M. and Grin,   Y. Charge decomposition analysis of the electron   localizability indicator: a bridge between the orbital   and direct space representation of the chemical bond",   Chemistry-A European Journal, 13, pp. 5724{5741   (2007).   50. Paredes-Gil, K. and Jaque, P. Initiation stage of   alkene metathesis: Insights from natural bond orbital   and charge decomposition analyses", Chemical Physics   Letters, 618, pp. 174{181 (2015).   51. Rajesh, P., Kandan, P., Sathish, S., et al. Vibrational   spectroscopic, UV-Vis, molecular structure and NBO   analysis of Rabeprazole", Journal of Molecular Structure,   1137, pp. 277{291 (2017).   52. Taherpour, A.A., Rezaei, O., Shahri, Z., et al. First   principles studies of electronic and optical properties   of helium adsorption on Sc-doped BN monolayer",   Journal of the Iranian Chemical Society, 12, pp. 1983{   1990 (2015).   53. Srivastava, R., Al-Omary, F.A.M., El-Emam, A.A., et   al. A combined experimental and theoretical DFT   (B3LYP, CAM-B3LYP and M06-2X) study on electronic   structure, hydrogen bonding, solvent e_ects and   spectral features of methyl 1H-indol-5-carboxylate",   Journal of Molecular Structure, 1137, pp. 725{741   (2017).   54. Scheiner, S. and Duan, X. Applicability of the Marcus   equation to proton transfer in symmetric and unsymmetric   systems", Journal of Molecular Structure:   THEOCHEM, 285, pp. 27{32 (1993).   55. Shamsipur, M., Barati, A., Taherpour, A.A., et al.   Resolving the multiple emission centers in carbon   dots: from uorophore molecular states to aromatic   domain states and carbon-core states", The Journal of   Physical Chemistry Letters, 9, pp. 4189{4198 (2018).   56. Taherpour, A.A. and Maleki-Noureini, M. Free energies   of electron transfer, electron transfer kinetic   theoretical and quantitative structural relationships   and electrochemical properties studies of gadolinium   nitride cluster fullerenes Gd3N@Cn in [X-UTY][   Gd3N@Cn] (n = 80, 82, 84, 86 and 88) supramolecular   complexes", Fullerenes, Nanotubes and Carbon   Nanostructures, 21, pp. 485{502 (2013).