An integrated model for predicting the size of silver nanoparticles in montmorillonite/chitosan bionanocomposites: A hybrid of data envelopment analysis and genetic programming approach

Document Type : Article

Authors

Department of Materials Science and Engineering, Shahid Bahonar University of Kerman, Kerman, P.O. Box 76135-133, Iran

10.24200/sci.2020.52510.2748

Abstract

Unique chemical and physical properties of silver nanoparticles (AgNPs) enhances its usages in various categories such as medical utilities. Due to the high dependency of AgNPs properties to the size, this study is an attempt to employ gene expression programing (GEP) for constructing a quantitative model for estimating the size of AgNPs in montmorillonite/chitosan bionanocomposites that prepared by chemical approach. Generalization capabilities, fault tolerance, noise tolerance, high parallelism, nonlinearity and significant information processing characteristics are the main advantages of GEP. Accordingly, the practical parameters including reaction temperature, AgNO3 concentration, weight of montmorillonite in aqueous AgNO3/chitosan solution (WMMT) and the percentage of chitosan are selected as input parameters through GEP modeling. The accuracy of proposed models are investigated by statistical indicators including mean absolute percentage error (MAPE), root relative squared error (RRSE), root mean square error (RMSE) and correlation coefficient (R2). Finally, the best model is selected by R2 = 0.987, RMSE = 0.100, RRSE = 0.146 and MAPE = 0.221. The sensitivity analysis confirmed that the percentage of chitosan, concentration of AgNO3, WMMT and reaction temperature are the most effecting parameters on the size of AgNPs, respectively.

Keywords


References     1. Shabanzadeh, P., Yusof, R., and Shameli, K. Arti-     _cial neural network for modeling the size of silver     nanoparticles' prepared in montmorillonite/starch bionanocomposites",     Journal of Industrial and Engineering     Chemistry, 24, pp. 42{50 (2013).     2. Veisi, H., Azizi, S., and Mohammadi, P. Green synthesis     of the silver nanoparticles mediated by Thymbra     spicata extract and its application as a heterogeneous     and recyclable nanocatalyst for catalytic reduction     of a variety of dyes in water", Journal of Cleaner     Production, 170, pp. 1536{1543 (2016).     3. Rai, M., Yadav, A., and Gade, A. Silver nanoparticles     as a new generation of antimicrobials", Biotechnology     Advances, 27(1), pp. 76{83 (2009).     4. Shameli, K., Ahmad, M.B., Al-Mulla, E.A.J., et     al. Green biosynthesis of silver nanoparticles using     Callicarpa maingayi stem bark extraction", Molecules,     17(7), pp. 8506{8517 (2012).     5. Shameli, K., Ahmad, M.B., Yunus, W.M.Z.W., et     al. Synth2esis of silver/montmorillonite nanocomposites     using -irradiation", International Journal of     Nanomedicine, 5, p. 1067 (2010).     6. Makwana, D., Casta~no, J., Somani, R.S., et al. Characterization     of Agar-CMC/Ag-MMT nanocomposite     and evaluation of antibacterial and mechanical properties     for packaging applications", Arabian Journal of     Chemistry, 13(1), pp. 3092{3099 (2018).     7. Lavorgna, M., Attianese, I., Buonocore, G.G., et     al. MMT-supported Ag nanoparticles for chitosan     nanocomposites: structural properties and antibacterial     activity", Carbohydrate Polymers, 102, pp. 385{     392 (2014).     8. Usman, M.S., Ibrahim, N.A., Shameli, K., et al. Copper     nanoparticles mediated by chitosan: synthesis and     1882 E. Sarvestani and G.R. Khayati/Scientia Iranica, Transactions F: Nanotechnology 28 (2021) 1871{1883     characterization via chemical methods", Molecules,     17(12), pp. 14928{14936 (2012).     9. Shameli, K., Ahmad, M.B., Zargar, M.,     et al. Synthesis and characterization of     silver/montmorillonite/chitosan bionanocomposites     by chemical reduction method and their antibacterial     activity", International Journal of Nanomedicine, 6,     p. 271 (2011).     10. Ahmad, M.B., Shameli, K., Tay, M.Y., et al. Antibacterial     e_ect of silver nanoparticles prepared in     bipolymers at moderate temperature", Research on     Chemical Intermediates, 40(2), pp. 817{832 (2014).     11. Shameli, K., Ahmad, M.B., Yunus, W.M.Z.W., et al.     Green synthesis of silver/montmorillonite/chitosan     bionanocomposites using the UV irradiation method     and evaluation of antibacterial activity", International     Journal of Nanomedicine, 5, pp. 5:875{887 (2010).     12. Jafari, M.M. and Khayati, G.R. Prediction of hydroxyapatite     crystallite size prepared by sol-gel route: gene     expression programming approach", Journal of Sol-Gel     Science and Technology, 86(1), pp. 112{125 (2018).     13. Ebrahimzade, H., Khayati, G.R., and Scha_e, M. A     novel predictive model for estimation of cobalt leaching     from waste Li-ion batteries: Application of genetic     programming for design", Journal of Environmental     Chemical Engineering, 6(4), pp. 3999{4007 (2018).     14. Shabanzadeh, P., Senu, N., Kamyar, S., et al. Prediction     of silver nanoparticles' diameter in montmorillonite/     chitosan bionanocomposites by using arti_cial     neural networks", Research on Chemical Intermediates,     41(5), pp. 3275{3287 (2015).     15. Khayati, G.R. Adaptive neuro-fuzzy inference system     and neural network in predicting the size of monodisperse     silica and process optimization via simulated annealing     algorithm", Journal of Ultra_ne Grained and     Nanostructured Materials, 51(1), pp. 43{52 (2018).     16. Faradonbeh, R.S. and Monjezi, M. Prediction and     minimization of blast-induced ground vibration using     two robust meta-heuristic algorithms", Engineering     with Computers, 33(4), pp. 835{851 (2017).     17. Sun, M. Prediction of viscosity of branched alkanes     using gene expression programing", Petroleum Science     and Technology, 36(23), pp. 2049{2056 (2018).     18. Tiryaki, B. Predicting intact rock strength for mechanical     excavation using multivariate statistics, arti-     _cial neural networks, and regression trees", Engineering     Geology, 99(1{2), pp. 51{60 (2008).     19. Sayadi, A.R., Khalesi, M.R., and Borji, M.K. A     parametric cost model for mineral grinding mills",     Minerals Engineering, 55, pp. 96{102 (2014).     20. Sayadi, A.R., Lashgari, A., and Paraszczak, J.J.     Hard-rock LHD cost estimation using single and     multiple regressions based on principal component     analysis", Tunnelling and Underground Space Technology,     27(1), pp. 133{141 (2012).     21. Kaiser, H.F. An index of factorial simplicity", Psychometrika,     39(1), pp. 31{36 (1974).     22. Al-Anni, R., Hou, J., Azzawi, H., et al. New gene     selection method using gene expression programing approach     on microarray data sets", International Conference     on Computer and Information Science, Springer,     Cham (2018).     23. Dikmen, E. Gene expression programming strategy     for estimation performance of LiBr-H2O absorption     cooling system", Neural Computing and Applications,     26(2), pp. 409{415 (2015).     24. Steeb, W.-H., The Nonlinear Workbook: Chaos, Fractals,     Cellular Automata, Neural Networks, Genetic Algorithms,     Fuzzy Logic with C++, Java, Symbolicc++     and Reduce Programs, World Scienti_c (2001).     25. Brownlee, J., Clever Algorithms: Nature-Inspired Programming     Recipes, Jason Brownlee (2011).     26. Monjezi, M., Baghestani, M., Shirani Faradonbeh, R.,     et al. Modi_cation and prediction of blast-induced     ground vibrations based on both empirical and computational     techniques", Engineering with Computers,     32(4), pp. 717{728 (2016).     27. Faradonbeh, R.S., Jahed Armaghani, D., Abd Majid,     M.Z., et al. Prediction of ground vibration due to     quarry blasting based on gene expression programming:     a new model for peak particle velocity prediction",     International Journal of Environmental Science     and Technology, 16(6), pp. 1453{1464 (2016).     28. Khandelwal, M., Armaghani, D.J., Faradonbeh, R.S.,     et al. A new model based on gene expression programming     to estimate air ow in a single rock joint",     Environmental Earth Sciences, 75(9), p. 739 (2016).     https://doi.org/10.1007/s12665-016-5524-6     29. Aval, S.B., Ketabdari, H., and Gharebaghi, S.A. Estimating     shear strength of short rectangular reinforced     concrete columns using nonlinear regression and gene     expression programming", Structures, Elsevier, 12, p.     13{29 (2017).     30. Ferreira, C., Gene Expression Programming: Mathematical     Modeling by an Arti_cial Intelligence,     Springer, 21 (2006).     31. Jafari, M.M. and Khayati, G.R. Prediction of hydroxyapatite     crystallite size prepared by sol-gel route: gene     expression programming approach", Journal of Sol-Gel     Science and Technology, 86(1), pp. 112{125 (2018).     32. Zhong, J., Feng, L., and Ong, Y.S. Gene expression     programming: A survey", IEEE Computational Intelligence     Magazine, 12(3), pp. 54{72 (2017).     33. Faradonbeh, R.S., Monjezi, M., and Armaghani, D.J.     Genetic programing and non-linear multiple regression     techniques to predict backbreak in blasting operation",     Engineering with Computers, 32(1), pp. 123{     133 (2016).     34. Baykaso_glu, A., Gullub, H., C_ anak_ci, H., et al.     Prediction of compressive and tensile strength of     limestone via genetic programming", Expert Systems     with Applications, 35(1{2), pp. 111{123 (2008).     35. Ferreira, C. and Gepsoft, U. What is gene expression     programming" (2008).     E. Sarvestani and G.R. Khayati/Scientia Iranica, Transactions F: Nanotechnology 28 (2021) 1871{1883 1883     36. Sar_demir, M. E_ect of specimen size and shape     on compressive strength of concrete containing y     ash: Application of genetic programming for design",     Materials & Design, 56, pp. 297{304 (2014).     37. Jafari, S. and Mahini, S.S. Lightweight concrete design     using gene expression programing", Construction     and Building Materials, 139, pp. 93{100 (2017).     38. Fallahpour, A., et al. An integrated model for green     supplier selection under fuzzy environment: application     of data envelopment analysis and genetic programming     approach", Neural Computing and Applications,     27(3), pp. 707{725 (2016).     39. Khozani, Z.S., Bonakdari, S., and Ebtehaj, I. An     analysis of shear stress distribution in circular channels     with sediment deposition based on Gene Expression     Programming", International Journal of Sediment Research,     32(4), pp. 575{584 (2017).     40. Hoseinian, F.S., Faradonbeh, R.S., Abdollahzadeh, A.     et al. Semi-autogenous mill power model development     using gene expression programming", Powder Technology,     308, pp. 61{69 (2017).