Experimental investigation of the effect of one-dimensional roughened surface on the pool boiling of nanofluids

Document Type : Research Note

Authors

Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, P.O. Box 14515-775, Iran

10.24200/sci.2020.51189.2048

Abstract

The objectives of this research are to develop a special surface for increasing the nucleation heat transfer characteristics, decreasing the superheat temperature and postponing the occurrence of critical heat flux for long term work. A laboratory apparatus was built. In order to more feeding the microlayer of the bubble by capillary force of the micro-grooves, the boiling surface was roughened in one direction. Despite the fact that the boiling characteristics of roughened surface are improved relative to the polished surface, the results are not very impressive Although the boiling of two Nano-fluids, copper oxide and alumina on the micro-groove surface resulted in a significant increase in the nucleation heat transfer but this method cannot be used for a long time process because of the continues deposition of nanoparticles over the time and creation of insulation layer on the micro-groove surface. Therefore, simultaneous utilization of micro- groove surface, as well as the depositing of a thin and porous layer of nanoparticles on the surface increased the feeding of sites and the production of bubbles respectively. The critical heat flux and boiling heat transfer coefficient for the surface deposited with copper oxide nanoparticles enhanced by 46.5 % and up to 74.2% respectively.

Keywords


1. Nukiyama, S. The maximum and minimum values of  the heat Q transmitted from metal to boiling water  under atmospheric pressure", Japanese Society of Mechanical  Engineering, 9(12), pp. 1419{1433 (1966).  2. Aznam, S.M., Mori, S., Sakakibara, F., and Okuyama,  K. E_ects of heater orientation on critical heat ux for  nanoparticle-deposited surface with honeycomb porous  plate attachment in saturated pool boiling of water",  International Journal of Heat and Mass Transfer, 102,  pp. 1345{1355 (2016).  3. Pournaderi, P. and Pishevar, A.R. Numerical simulation  of oblique impact of a droplet on a surface in the  _lm boiling regime", Scientia Iranica, 21(1), p. 119  (2014).  4. Rana, Sh., Nawaz, M., and Haider Qureshi, I. Numerical  study of hydrothermal characteristics in nano uid  using KKL model with Brownian motion", Scientia  Iranica, 26(3), pp. 1931{1943 (2019).  5. Kim, D.E., Yu, D.I., Jerng, D.W., Kim, M.H., and  Ahn, H.S. Review of boiling heat transfer enhancement  on micro/nanostructured surfaces", Experimental  Thermal and Fluid Science, 66, pp. 173{196 (2015).  6. Kim, J., Jun, S., Laksnarain, R., and You, S.M. E_ect  of surface roughness on pool boiling heat transfer  at a heated surface having moderate wettability",  International Journal of Heat and Mass Transfer, 101,  pp. 992{1002 (2016).  7. Mohammadi. M. and Khayat, M. Experimental investigation  of the e_ect of roughness orientation of surface  on motion of bubbles and critical heat ux", Modares  Mechanical Engineering, 17, pp. 531{541 (2018).  8. Choi, S.U.S. and Eastman, J.A.A. Enhancing thermal  conductivity of uids with nanoparticles", in ASME  International Mechanical Engineering Congress & Exposition,  San Francisco, CA (1995).  9. Vafaei, S. Nanouid pool boiling heat transfer phenomenon",  Powder Technology, 277, pp. 181{192  (2015).  10. Wen, D. and Ding, Y. Experimental investigation  into the pool boiling heat transfer of aqueous based  -alumina nanouids", Journal of Nanoparticle Research,  7, pp. 265{274 (2005).  11. Das, S.K., Putra, N., and Roetzel, W. Pool boiling of  nano-uids on horizontal narrow tubes", International  Journal of Multiphase Flow, 29(8), pp. 1237{1247  (2003).  12. Holman, J.P., Experimental Methods for Engineers,  Hill, New York: McGraw-7th Ed. (2001).  13. Amiri, A., Shanbedi, M., Amiri, H., Zeinali Heris,  S., Kazi, S.N., Chew, B.T., and Eshghi, H. Pool  boiling heat transfer of CNT/water nanouid", Applied  Thermal Engineering, 71(1), pp. 450{459 (2014).  14. Kim, H.D., Kim, J., and Kim, M.H. Experimental  studies on CHF characteristics of nano-uids at pool  boiling", International Journal of Multiphase Flow,  33, pp. 691{706 (2007).  15. Chopkar, M., Das, A.K., Manna, I., and Das, P.K.  Pool boiling heat transfer characteristics of ZrO2-  water nanouids froma at surface in a pool", Journal  of Heat and Mass Transfer, 44, pp. 999{1004 (2008).  2966 M. Mohammadi and M. Khayat/Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 2954{2966  16. Trisaksri, V. and Wongwises, S. Nucleate pool boiling  heat transfer of TiO2-R141b nanouids", International  Journal of Heat and Mass Transfer, 52, pp. 1582{1588  (2009).  17. Kathiravan, R., Kumar, R., Gupta, A., and Chandra,  R. Preparation and pool boiling characteristics of copper  nanouids over a at plate heater", International  Journal of Heat and Mass Transfer, 53(9), pp. 1673{  1681 (2010).  18. Stutz, B., Morceli, C.H.S., Silva, M.F., Cioulachtjian,  S., and Bonjour, J. Inuence of nanoparticle surface  coating on pool boiling", Experimental Thermal Fluid  Science, 35, pp. 1239{1249 (2011).  19. Kole, M. and Dey, T.K. Investigations on the pool  boiling heat transfer and critical heat ux of ZnOethyleneglycol  nanouids", Apply Thermal Engineering,  37, pp. 112{119 (2012).  20. Kamatchi, R., Venkatachalapathy, S., and Nithya, C.  Experimental investigation and mechanism of critical  heat ux enhancement in pool boiling heat transfer  with nanouids", Heat and Mass Transfer, 52(11), pp.  2357{2366 (2016).  21. Sarafraz, M.M., Hormozi, F., Silakhori, M., and  Peyghambarzadeh, S.M. On the fouling formation  of functionalized and non-functionalized carbon nano  tube nano-uids under pool boiling condition", Apply  Thermal Engineering, 95, pp. 433{444 (2016).