Global practical stabilization of discrete-time switched affine systems via switched Lyapunov functions and state-dependent switching functions

Document Type : Article


Department of Electrical Engineering, Sahand University of Technology, Sahand New Town, Tabriz, P.O. Box 51335-1996, Iran


This paper addresses the problem of global practical stabilization
of discrete-time switched affine systems via switched Lyapunov
functions with the objectives of achieving less conservative
stability conditions and less conservative size of the ultimate
invariant set of attraction. The main contribution is to propose a
state-dependent switching controller synthesis that guarantees
simultaneously the invariance and global attractive properties of a
convergence set around a desired equilibrium point. This set is
constructed by the intersection of a family of ellipsoids associated
with each of switched quadratic Lyapunov functions. The global
practical stability conditions are proposed as a set of Bilinear
Matrix Inequalities (BMIs) for which an optimization problem is
established to minimize the size of the ultimate invariant set of
attraction. A DC-DC buck converter is considered to illustrate the
effectiveness of the proposed stabilization and controller synthesis


References  1. Handbook of Hybrid Systems Control, J. Lunze and  F. Lamnabhi-Lagarrigue, Eds., Cambridge University  Press (2009).  2. Sun, Z. and Sam Ge, S., Switched Linear Systems,  Control and Design, E.D. Sontag, M. Thoma, A. Isidori  and J. H. van Schuppen, Eds., Springer-Verlag London  (2005).  3. Zhang, L., Zhu, Y., Shi, P., et al., Time-dependent  Switched Discrete-time Linear Systems: Control and  Filtering, J. Kacprzyk, Ed., Springer International  Publishing Switzerland (2016).  4. Liberzon, D., Switching in Systems and Control, T.  Basar, Bikhauser Boston (2003).  5. Zhao, W., Kao, Y., Niu, B., et al., Control Synthesis  of Switched Systems, Springer International Publishing  Switzerland (2017).  6. Sun, Z. and Sam Ge, S., Stability Theory of Switched  Dynamical Systems, A. Isidori, J.H. van Schuppen,  E.D. Sontag, M. Thoma and M. Krstic, Eds., Springer-  Verlag London (2011).  7. Liberzon, D. and Morse, A.S. Basic problems in stability  and design of switched systems", IEEE Control  Syst. Mag., 19(5), pp. 59{70 (1999).  8. Hai Lin, H. and Antsaklis, P.J. Stability and stabilizability  of switched linear systems: a survey of recent  results", IEEE Trans. Autom. Control, 54(2), pp. 308{  322 (2009).  9. Decarlo, R.A., Branicky, M.S., Pettersson, S., et al.  Perspectives and results on the stability and stabilizability  of hybrid systems", Proceedings of the IEEE,  88(7), pp. 1069{1082 (2000).  10. Shorten, R., Wirth, F., Mason, O., et al. Stability criteria  for switched and hybrid systems", SIAM Review,  49(4), pp. 545{592 (2007).  11. Deaecto, G.S., Geromel, J.C., Garcia, F.S., et al.  Switched a_ne systems control design with application  to DC-DC converters", IET Control Theory A.,  4(7), pp. 1201{1210 (2010).  12. Baldi, S., Papachristodoulou, A., and Kosmatopoulos,  E.B. Adaptive pulse width modulation design for  power converters based on a_ne switched systems",  Nonlinear Anal-Hybri., 30, pp. 306{322 (2018).  13. Yoshimora, V.L., Assuncao, E., Pires da Silva, E.R., et  al. Observer-based control design for switched a_ne  systems and applications to DCDC converters", Journal  of Control, Automation and Electrical Systems,  24(4), pp. 535{543 (2013).  14. Corona, D., Buisson, J., De Schutter, B., et al. Stabilization  of switched a_ne systems: An application  to the buck-boost converter", Proceedings of American  Control Conf., New York, pp. 6037{6042 (2007).  15. Albea, C., Garcia, G., and Zaccarian, L. Hybrid dynamic  modeling and control of switched a_ne systems:  application to DC-DC converters", IEEE 54th Annual  Conf. on Decision and Control, Osaka, Japan, pp.  2264{2269 (2015).  16. Beneux, G., Riedinger, P., Daafouz, J., et al. Adaptive  stabilization of switched a_ne systems with unknown  equilibrium points: application to power converters",  Automatica, 99, pp. 82{91 (2019).  17. Hejri, M., Giua, A., and Mokhtari, H. On the  complexity and dynamical properties of mixed logical  dynamical systems via an automaton-based realization  of discrete-time hybrid automaton", Int. J. of Robust  Nonlin., 28(16), pp. 4713{4746 (2018).  18. Deaecto, G.S. and Geromel, J.C. Stability analysis  and control design of discrete-time switched a_ne  systems", IEEE Trans. Autom. Control, 62(8), pp.  4058{4065 (2017).  19. Egidio, L.N. and Deaecto, G.S. Novel practical  stability conditions for discrete-time switched a_ne  systems", IEEE Trans. Autom. Control, 64(11), pp.  4705{4710 (2019).  20. Albea Sanchez, C., Garcia, G., Sabrina, H., et al.  Practical stabilisation of switched a_ne systems with  dwell-time guarantees", IEEE Trans. Autom. Control,  64(11), pp. 4811{4817 (2019).  21. Zhai, G. and Michel, A.N. On practical stability of  switched systems", Proceedings of the 41st IEEE Conf.  on Decision and Control, 3, pp. 3488{3493 (2002).  DOI: 10.1109/CDC.2002.1184415  22. Zhai, G. and Michel, A.N. Generalized practical  stability analysis of discontinuous dynamical systems",  42nd IEEE International Conf. on Decision and ConM.  Hejri/Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 1606{1620 1619  trol (IEEE Cat. No.03CH37475), 2, pp. 1663{1668  (2003). DOI: 10.1109/CDC.2003.1272851  23. Xu, X., Zhai, G., and He, S. Some results on  practical stabilizability of discrete-time switched a_ne  systems", Nonlinear Anal-Hybri., 4(1), pp. 113{121  (2010).  24. Xu, X., Zhai, G., and He, S. On practical stabilizability  of discrete-time switched a_ne systems", Joint  48th IEEE Conf. on Decision and Control, Shanghai,  China, pp. 2144{2149 (2009).  25. Xu, X., Zhai, G., and He, S. On practical asymptotic  stabilizability of switched a_ne systems", Nonlinear  Anal-Hybri., 2(1), pp. 196{208 (2008).  26. Xu, X. and Zhai, G. Practical stability and stabilization  of hybrid and switched systems", IEEE Trans.  Autom. Control, 50(11), pp. 1897{1903 (2005).  27. Xu, X., Zhai, G., and He, S. Stabilizability and  practical stabilizability of continuous-time switched  systems: a uni_ed view", Proceedings of the 2007  American Control Conf., New York City, USA, pp.  663{668 (2007).  28. Tro_no, A., Assmann, D., Scharlau, C.C., et al.  Switching rule design for switched dynamic systems  with a_ne vector _elds", IEEE Trans. Autom. Control,  54(9), pp. 2215{2222 (2009).  29. Scharlau, C.C., de Oliveria, M.C., Tro_no, A., et  al. Switching rule design for a_ne switched systems  using a max-type composition rule", IEEE Trans.  Autom. Control, 68, pp. 1{8 (2014).  30. Daafouz, J., Riedinger, P., and Iung, C. Stability  analysis and control synthesis for switched systems: a  switched Lyapunov function approach", IEEE Trans.  Autom. Control, 47(11), pp. 1883{1887 (2002).  31. Branicky, M.S. Multiple Lyapunov functions and  other analysis tools for switched and hybrid systems",  IEEE Trans. Autom. Control, 43(4), pp. 475{482  (1998).  32. Kuiava, R., Ramos, R.A., Pota, H.R., et al. Practical  stability of switched systems without a common  equilibria and governed by a time-dependent switching  signal", Eur. J. Control, 19(3), pp. 206{213 (2013).  33. Perez, C., Azhmyakov, V., and Poznyak, A. Practical  stabilization of a class of switched systems: dwell-time  approach", IMA J. of Math. Control I., 32(4), pp. 689{  702 (2015).  34. Hetel, L. and Fridman, E. Robust sampled-data control  of switched a_ne systems", IEEE Trans. Autom.  Control, 58(11), pp. 2922{2928 (2013).  35. Senesky, M., Eirea, G., and Koo, T.J. Hybrid Modeling  and control of power electronics", Hybrid Systems:  Computations and Control, Lecture Notes in Computer  Science, Springer, pp. 450{465 (2003).  36. Albea Sanchez, C., Lopez Santos, O., Zambrano  Prada, D.A., et al. On the practical stability of hybrid  control algorithm with minimum dwell time for a DCAC  converter", IEEE Trans. Control Syst. Technol.,  27(6), pp. 2581{2588 (2019).  37. Blondel, V. and Tsitsiklis, J.N. NP-Hardness of some  linear control design problems", SIAM J. Control and  Optim., 35(6), pp. 2118{2127 (1997).  38. Wicks, M., Peleties, P., and DeCarlo, R. Switched  controller synthesis for the quadratic stabilization of a  pair of unstable linear systems", Eur. J. Control, 4(2),  pp. 140{147 (1998).  39. Tro_no, A., Scharlau, C.C., and Coutinho, D.F.  Corrections to Switching rule design for switched  dynamic systems with a_ne vector _elds"", IEEE  Trans. Autom. Control, 57(4), pp. 1080{1082 (2014).  40. Deaecto, G.S. Dynamic output feedback H1 control  of continuous-time switched a_ne systems", Automatica,  71, pp. 44{49 (2016).  41. Hauroigne, P., Riedinger, P., and Iung, C. Switched  a_ne systems using sampled-data controllers: robust  and guaranteed stabilization", IEEE Trans. Autom.  Control, 56(12), pp. 2929{2935 (2011).  42. Poznyak, A., Polyakov, A., and Azhmyakov, V., Attractive  Ellipsoids in Robust Control, T. Basar, Ed.,  Birkhauser (2014).  43. Boyd, S., El Ghaoui, L., Feron, E., et al., Linear Matrix  Inequalities in Systems and Control Theory, Society for  Industrial and Applied Mathematics, SIAM (1994).  44. VanAntwerp, J.G. and Braatz, R.D. A tutorial on  linear and bilinear matrix inequalities", J. Process  Contr., 10(4), pp. 365{385 (2000).  45. Lofberg, J. YALMIP: A toolbox for modeling and  optimization in MATLAB", IEEE International Symposium  on Computer Aided Control Systems Design,  Taipei, Taiwan, pp. 284{289 (2004).  46. Kocvara, M. and Stingl, M. PENBMI Users Guide  (Version 2.1)", (2006).  47. Mari_ethoz, S., Alm_er, S., B^aja, M. et al. Comparison  of hybrid control techniques for buck and boost DCDC  converters", IEEE Trans. Control Syst. Technol.,  18(5), pp. 1126{1145 (2010).  48. Deaecto, G.S. and Santos, G.C. State feedback H1  control design of continuous-time switched-a_ne systems",  IET Control Theory A., 9(10), pp. 1511{1516  (2014).