Design and synthesis of carbon nanotubes for adsorption utilities: An approach to direct preparation by mechanical milling at room temperature

Document Type : Article


1 Department of Nano Technology, Mineral Industries Research Center (MIRC), Shahid Bahonar University of Kerman, 7618868366 Kerman, Iran

2 Department of Material Science and Engineering, Shahid Bahonar University of Kerman, 7618868366 Kerman, Iran


The carbon nanotubes (CNTs) were produced by mechanical milling of Hexane in the presence of two different catalysts (amorphous and crystalline Fe) at Ar atmosphere. Raman spectroscopy, Fourier-transform infrared spectroscopy, transmission electron microscopy, high-resolution scanning electron microscopy, Brunauer–Emmett–Teller (BET) and thermal analysis were employed to characterize the CNTs. The results showed that the amorphous catalyst induced more structural defects in CNTs respect to the crystalline catalyst. The ratio of single wall to multiwall CNTs of prepared samples were about 0.31 and 7.3 for crystalline and amorphous catalyst, respectively. Moreover, the BET results confirmed the higher adsorption capacity of the sample prepared by amorphous catalyst due to their higher structural defects.


References      1. Iijima, S. Helical microtubules of graphitic carbon",      Nature, 354, pp. 56{58 (1991).      2. Terrones, M. Science and technology of the twenty-      _rst century: synthesis, properties, and applications      of carbon nanotubes", Annual Review of Materials      Research, 33, pp. 419{501 (2003).      3. Wang, R., Xie, L., Hameed, S., et al. Mechanisms and      applications of carbon nanotubes in terahertz devices:      A review", Carbon, 132, pp. 42{58 (2018).      4. Hou, P.-X., Liu, C., and Cheng, H.-M. Puri_cation of      carbon nanotubes", Carbon, 46, pp. 2003{2025 (2008).      5. Krueger, A., Carbon materials and nanotechnology,      John Wiley & Sons (2010).      6. Fazelirad, H., Ranjbar, M., Taher, M.A., et al. Preparation      of magnetic multi-walled carbon nanotubes for      an e_cient adsorption and spectrophotometric determination      of amoxicillin", Journal of Industrial and      Engineering Chemistry, 21, pp. 889{892 (2015).      7. Sun, L., Wang, X., Wang, Y., et al. Roles of carbon      nanotubes in novel energy storage devices", Carbon,      122, pp. 462{474 (2017).      8. Rashad, A.M. E_ect of carbon nanotubes (CNTs) on      the properties of traditional cementitious materials",      Construction and Building Materials, 153, pp. 81{101      (2017).      9. Rahimian-Koloor, S.M., Hashemianzadeh, S.M., and      Shokrieh, M.M. E_ect of CNT structural defects on      the mechanical properties of CNT/Epoxy nanocomposite",      Physica B: Condensed Matter, 540, pp. 16{25      (2018).      10. Mirmohammadi, S.A., Sadjadi, S., and Bahri-      Laleh, N. 10-electrical and electromagnetic properties      of CNT/polymer composites", Carbon Nanotube-      Reinforced Polymers: From Nanoscale to Macroscale,      pp. 233{258, Elsevier (2018).      11. Wang, Y., Li, D., Sun, W., et al. Synthesis and _eld      electron emission properties of multi-walled carbon      nanotube _lms directly grown on catalytic stainless      steel substrate", Vacuum, 149, pp. 195{199 (2018).      12. Gao, S., Liu, H., Xu, L., et al. Hydrogen storage properties      of nano-CoB/CNTs catalyzed MgH2", Journal      of Alloys and Compounds, 735, pp. 635{642 (2018).      13. Liu, X.Q., Li, C.J., Yi, J.H., et al. Enhancing the      interface bonding in carbon nanotubes reinforced Al      matrix composites by the in situ formation of TiAl3      and TiC", Journal of Alloys and Compounds, 765, pp.      98{105 (2018).      14. Yang, P., You, X., Yi, J., et al. Inuence of dispersion      state of carbon nanotubes on electrical conductivity      of copper matrix composites", Journal of Alloys and      Compounds, 752, pp. 376{380 (2018).      15. Liao, J. and Tan, M.-J. Mixing of carbon nanotubes      (CNTs) and aluminum powder for powder metallurgy      use", Powder Technology, 208, pp. 42{48 (2011).      16. Barzegar-Bafrooei, H. and Ebadzadeh, T. Synthesis      of nanocomposite powders of -alumina-carbon nanotube      by sol-gel method", Advanced Powder Technology,      22, pp. 366{369 (2011).      1894 M.H. Khazaei Feizabad et al./Scientia Iranica, Transactions F: Nanotechnology 28 (2021) 1884{1895      17. Hosseini, A., Ghoreyshi, A.A., Pirzadeh, K., et al.      Enhancement of hydrogen storage on multi-walled      carbon nanotube through KOH activation and nickel      nanoparticle deposition", Scientia Iranica, 24, pp.      1230{1240 (2017).      18. Yousefzadeh, M., Amani-Tehran, M., Lati_, M.,      et al. Morphology and mechanical properties      of polyacrylonitrile/multi-walled carbon nanotube      (PAN/      MWNTs) nanocomposite electrospun nano_bers", Scientia      Iranica, 17, pp. 60{65 (2010).      19. Laplaze, D., Bernier, P., Maser, W.K., et al. Carbon      nanotubes: The solar approach", Carbon, 36, pp. 685{      688 (1998).      20. Su, Y. and Zhang, Y. Carbon nanomaterials synthesized      by arc discharge hot plasma", Carbon, 83, pp.      90{99 (2015).      21. Amans, D., Diouf, M., Lam, J., et al. Origin of      the nano-carbon allotropes in pulsed laser ablation      in liquids synthesis", Journal of Colloid and Interface      Science, 489, pp. 114{125 (2017).      22. Yilmaz, M., Raina, S., Hsu, S.H., et al. Growing      micropatterned CNT arrays on aluminum substrates      using hot-_lament CVD process", Materials Letters,      209, pp. 376{378 (2017).      23. Huang, T., Fang, H., Mao, S., et al. In-situ synthesized      TiC@CNT as high-performance catalysts for      oxygen reduction reaction", Carbon, 126, pp. 566{573      (2018).      24. Guler, O. and Evin, E. Carbon nanotubes formation      by short-time ball milling and annealing of graphite",      Optoelectronics and Advanced Materials-Rapid Communications,      6, pp. 183{187 (2012).      25. Chen, Y., Fitz Gerald, J., Chadderton L., et al. Investigation      of nanoporous carbon powders produced      by high energy ball milling and formation of carbon      nanotubes during subsequent annealing", Journal of      Metastable and Nanocrystalline Materials, 2(6), pp.      375{380 (1999).      26. Chen, Y., Conway, M., Gerald, J.F., et al. The nucleation      and growth of carbon nanotubes in a mechanothermal      process", Carbon, 42, pp. 1543{1548 (2004).      27. Pierard, N., Fonseca, A., Konya, Z., et al. Production      of short carbon nanotubes with open tips by      ball milling", Chemical Physics Letters, 335, pp. 1{      8 (2001).      28. Jeong, S.W., Son, S.Y., and Lee, D.H. Synthesis      of multi-walled carbon nanotubes using Co-Fe-      Mo/Al2O3 catalytic powders in a uidized bed reactor",      Advanced Powder Technology, 21, pp. 93{99      (2010).      29. Sano, N., Kinugasa, M., Otsuki, F., et al. Gas sensor      using single-wall carbon nanohorns", Advanced Powder      Technology, 18, pp. 455{466 (2007).      30. Ghosh, S. and Padmanabhan, V. Adsorption of      hydrogen on single-walled carbon nanotubes with defects",      Diamond and Related Materials, 59, pp. 47{53      (2015).      31. Chen, M., Yu, H.-W., Chen, J.-H., et al. E_ect of      puri_cation treatment on adsorption characteristics of      carbon nanotubes", Diamond and Related Materials,      16, pp. 1110{1115 (2007).      32. Liu, F., Zhang, X., Cheng, J., et al. Preparation of      short carbon nanotubes by mechanical ball milling and      their hydrogen adsorption behavior", Carbon, 41, pp.      2527{2532 (2003).      33. Pierard, N., Fonseca, A., Colomer, J.F., et al. Ball      milling e_ect on the structure of single-wall carbon      nanotubes", Carbon, 42, pp. 1691{1697 (2004).      34. Khayati, G.R. and Janghorban, K. The nanostructure      evolution of Ag powder synthesized by high energy ball      milling", Advanced Powder Technology, 23, pp. 393{      397 (2012).      35. Zhong, Y., Chaudhary, V., Tan, X., et al. Kinetic      study of the mechanochemical synthesis of Nd2 (Fe,      Co) 14B hard magnetic nanoparticles", Journal of      Alloys and Compounds, 747, pp. 755{763 (2018).      36. Routray, K.L., Saha, S., and Behera, D. E_ect of      CNTs blending on the structural, dielectric and magnetic      properties of nanosized cobalt ferrite", Materials      Science and Engineering: B, 226, pp. 199{205 (2017).      37. Khazaei Feizabad, M.H., Shara_, S., Khayati, G.R.,      et al. E_ect of process control agent on the structural      and magnetic properties of nano/amorphous      Fe0:7Nb0:1Zr0:1Ti0:1 powders prepared by high energy      ball milling", Journal of Magnetism and Magnetic      Materials, 449, pp. 297{303 (2018).      38. Suryanarayana, C., Mechanical Alloying and Milling,      CRC Press (2004).      39. Mazzucco, S., Wang, Y., Tanase, M., et al. Direct      evidence of active and inactive phases of Fe catalyst      nanoparticles for carbon nanotube formation", Journal      of Catalysis, 319, pp. 54{60 (2014).      40. Tsui, F. and Ryan, P. Self-organization of carbide      superlattice and nucleation of carbon nanotubes",      Journal of Nanoscience and Nanotechnology, 3, pp.      529{534 (2003).      41. Jia, X. and Wei, F. Advances in production and      applications of carbon nanotubes", Topics in Current      Chemistry, 375, p. 18 (2017).      42. Kumar, M. Carbon nanotube synthesis and growth      mechanism", Carbon Nanotubes-Synthesis, Characterization,      Applications, pp. 147{170 (2011).      43. Antunes, E.F., Lobo, A.O., Corat, E.J., et al. Comparative      study of _rst- and second-order Raman spectra      of MWCNT at visible and infrared laser excitation",      Carbon, 44, pp. 2202{2211 (2006).      44. Lehman, J.H., Terrones, M., Mans_eld, E., et al.      Evaluating the characteristics of multiwall carbon      nanotubes", Carbon, 49, pp. 2581{2602 (2011).      M.H. Khazaei Feizabad et al./Scientia Iranica, Transactions F: Nanotechnology 28 (2021) 1884{1895 1895      45. Santangelo, S., Messina, G., Donato, M., et al. Lowfrequency      Raman study of hollow multiwalled nanotubes      grown by Fe-catalyzed chemical vapor deposition",      Journal of Applied Physics, 100, p. 104311      (2006).      46. Donato, M., Messina, G., Santangelo, S., et al. Aid      of raman spectroscopy in diagnostics of MWCNT      synthesised by Fe-catalysed CVD", Journal of Physics:      Conference Series, 61(1), pp. 931{935 (2007).      47. DiLeo, R.A., Landi, B.J., and Ra_aelle, R.P. Purity      assessment of multiwalled carbon nanotubes by Raman      spectroscopy", Journal of Applied Physics, 101, p.      064307 (2007).      48. Sadezky, A., Muckenhuber, H., Grothe, H., et al.      Raman microspectroscopy of soot and related carbonaceous      materials: Spectral analysis and structural      information", Carbon, 43, pp. 1731{1742 (2005).      49. Dresselhaus, M.S., Dresselhaus, G., Saito, R., et al.      Raman spectroscopy of carbon nanotubes", Physics      Reports, 409, pp. 47{99 (2005).      50. Khazaei Feizabad, M.H., Shara_, S., Khayati, G.R.,      et al. Modeling of stress relaxation kinetics of amorphous      Fe0:7Nb0:1Zr0:1Ti0:1 alloy powder: A novel approach      based on di_erential thermal analysis", Powder      Technology, 336, pp. 441{448 (2018).      51. Khazaei Feizabad, M.H., Khayati, G.R., Shara_, S.,      et al. Improvement of soft magnetic properties of      Fe0:7Nb0:1Zr0:1Ti0:1 amorphous alloy: A kinetic study      approach", Journal of Non-Crystalline Solids, 493, pp.      11{19 (2018).      52. Khazaei Feizabad, M.H., Khayati, G.R., and Minouei,      H. A kinetic study approach for in-situ preparation      of amorphous Ni based nanocomposite reinforced by      nanocrystalline Ni-Ti shape memory alloy", Journal      of Non-Crystalline Solids, 524, p. 119652 (2019).      53. Birch, M.E., Ruda-Eberenz, T.A., Chai, M., et al.      Properties that inuence the speci_c surface areas of      carbon nanotubes and nano_bers", Annals of Occupational      Hygiene, 57, pp. 1148{1166 (2013).      54. Sing, K.S. Reporting physisorption data for gas/solid      systems with special reference to the determination of      surface area and porosity (Recommendations 1984)",      Pure and Applied Chemistry, 57, pp. 603{619 (1985).      55. Maryam, M., Suriani, A., Shamsudin, M.S., et      al. BET analysis on carbon nanotubes: Comparison      between single and double stage thermal CVD      method", Advanced Materials Research, 626, pp. 289{      293 (2013).