Multivariate adaptive regression spline approach to the assessment of surface mean pressure coefficient on surfaces of C-shaped building

Document Type : Research Note


Department of Civil Engineering, National Institute of Technology Rourkela, Odisha, India-769008


Proper assessment of wind load enables durable design of structures under varying wind load conditions. The accurate prediction of pressure coefficient on any irregular plan shaped buildings is essential for the assessment of wind loads and the structural design. The main objective of this study is to present an equation in the line of Multivariate Adaptive Regression Spline (MARS) approach using experimental data of surface mean pressure coefficient. This developed equation can be used satisfactorily for the prediction of pressure coefficient values accurately on the surfaces of C-shaped buildings. An extensive experimentation was carried out to obtain coefficient of pressure over the surfaces of C-shaped models under varying sizes, corner curvature and angle of incidence in a sub-sonic wind tunnel. The predicted values of pressure coefficient of different C-shaped buildings using developed model are compared with equations developed by Swami and Chandra’s (S&C) and Muehleisen and Patrizi’s (M&P). The comparison indicates that the proposed MARS model predicts pressure coefficient values more accurately than those by S&C and M&P models on frontal as well as side surfaces. Further, the model is used to validate with the actual building, Tokyo Polytechnic University (TPU) data to show the applicability of the proposed equation.


1. Lin, N., Letchford, C., Tamura, Y., Liang, B., and  Nakamura, O. Characteristics of wind forces acting  on tall buildings", Journal of Wind Engineering and  Industrial Aerodynamics, 93(3), pp. 217{242 (2005).  2. Macdonald, A.J., Wind Loading on Buildings, Halsted  Press (1975).  3. Meroney, R.N. Wind-tunnel modelling of the ow  about blu_ bodies", Journal of Wind Engineering and  Industrial Aerodynamics, 29(1{3), pp. 203{223 (1988).  4. Cook, N.J. The designer's guide to wind loading of  building structures", Building Research Establishment  Report, Part 2: Static Structures, Butterworths, London  (1990).  5. Suresh Kumar, K., Irwin, P.A., and Davies, A.  Design of tall building for wind: wind tunnel vs.  codes/standards", Third National Conference on Wind  Engineering, Calcutta, India, pp. 318{325 (2006).  6. Stathopoulos, T. and Zhou, Y.S. Numerical simulation  of wind-induced pressures on buildings of various  geometries", Computational Wind Engineering, 1, Elsevier,  pp. 419{430 (1993).  7. Zhou, Y. and Stathopoulos, T. A new technique for  the numerical simulation of wind ow around buildings",  Journal of Wind Engineering and Industrial  Aerodynamics, 72, pp. 137{147 (1997).  8. Ahmad, S. and Kumar, K. Interference e_ects on  wind loads on low-rise hip roof buildings", Engineering  Structures, 23(12), pp. 1577{1589 (2001).  9. Ho, T.C.E., Surry, D., and Davenport, A.G. The  variability of low building wind loads due to surrounding  obstructions", Journal of Wind Engineering and  Industrial Aerodynamics, 36, pp. 161{170 (1990).  10. Lou, W., Jin, H., Chen, Y., Cao, L., and Yao, J. Wind  tunnel test study on wind load characteristics for  double-skin facade building with rectangular shape",  Journal of Building Structure, 26(1), pp. 65{70 (2005).  2982 M. Mallick et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 2967{2984  11. Lu, S., Chen, S.F., Li, J.H., and Jiao, Y.F. Numerical  study on the e_ects of curved annex on the wind loads  on a spherical tall building", Engineering Mechanics,  2, p. 021 (2007).  12. Chakraborty, S., Dalui, S.K., and Ahuja, A.K. Experimental  and numerical study of surface pressure on  '+' plan shape tall building", International Journal of  Construction Materials and Structures, 8(3), pp. 251{  262 (2013).  13. Gomes, M.G.R., Rodrigues, A.M., and Mendes, P.  Experimental and numerical study of wind pressures  on irregular-plan shapes", Journal of Wind Engineering  and Industrial Aerodynamics, 93(10), pp. 741{756  (2005).  14. Amin, J.A. and Ahuja, A.K. Experimental study  of wind pressures on irregular plan shape buildings",  BBAA VI International Colloquium on: Blu_ Bodies  Aerodynamics and Applications, Milano, Italy, pp. 20{  24 (2008).  15. Amin, J.A. and Ahuja, A.K. Experimental study  of wind-induced pressures on buildings of various  geometries", International Journal of Engineering,  Science and Technology, 3(5), pp. 1{19 (2011).  8314  16. Kim, Y.C. and Kanda, J. Wind pressures on tapered  and set-back tall buildings", Journal of Fluids and  Structures, 39, pp. 306{321 (2013).  17. Chakraborty, S., Dalui, S.K., and Ahuja, A.K. Wind  load on irregular plan shaped tall building-a case  study", Wind Struct., 19(1), pp. 59{73 (2014).  18. Bhattacharyya, B., Dalui, S.K., and Ahuja, A.K.  Wind induced pressure on E plan shaped tall buildings",  Jordon Journal of Civil Engineering, 8(2), pp.  120{134 (2014).  19. Bhattacharyya, B. and Dalui, S.K. Investigation of  mean wind pressures on 'E' plan shaped tall building",  Wind and Structures, 26(2), pp. 99{114 (2018).  20. Yi, J. and Li, Q.S. Wind tunnel and full-scale study of  wind e_ects on a super-tall building", Journal of Fluid  Structure, 58, pp. 236{253 (2015).  21. Li, Y. and Li, Q. Across-wind dynamic loads on  L-shaped tall buildings", Wind Structure, 23(5), pp.  385{403 (2016).  22. Mallick, M., Mohanta, A., Kumar, A., and Raj,  V. Modelling of wind pressure coe_cients on Cshaped  building models", Modelling and Simulation  in Engineering, 2018, Article ID 6524945, 13 pages  (2018).  23. Akins, R.E. Wind pressures on buildings", CER;  76/77-15 (1976).  24. Walton, G.N. Airow and multiroom thermal analysis",  ASHRAE Transactions, 88, pp. 78{91 (1982).  25. Walker, I.S. and Wilson, D.J. Evaluating models for  superposition of wind and stack e_ect in air in_ltration",  Building and Environment, 28(2), pp. 201{210  (1993).  26. Ginger, J.D. and Letchford, C.W. Net pressures  on a low-rise full-scale building", Journal of Wind  Engineering and Industrial Aerodynamics, 83(1{3),  pp. 239{250 (1999).  27. Ohkuma, T., Marukawa, H., Niihori, Y., and Kato,  N. Full-scale measurement of wind pressures and  response accelerations of a high-rise building", Journal  of Wind Engineering and Industrial Aerodynamics,  38(2{3), pp. 185{196 (1991).  28. Swami, M.V. and Chandra, S. Procedures for calculating  natural ventilation airow rates in buildings",  ASHRAE Final Report FSEC-CR-163-86, ASHRAE  Research Project (1987).  29. Swami, M.V. and Chandra, S. Correlations for  pressure distribution on buildings and calculation of  natural-ventilation airow", ASHRAE Transactions,  94(3112), pp. 243{266 (1988).  30. Grosso, M. Wind pressure distribution around buildings:  a parametrical model", Energy and Buildings,  18(2), pp. 101{131 (1992).  31. Crawley, D.B., Lawrie, L.K., Winkelmann, F.C., Buhl,  W.F., Huang, Y.J., Pedersen, C.O., Strand, R.K.,  Liesen, R.J., Fisher, D.E., and Witte, M.J. EnergyPlus:  creating a new-generation building energy  simulation program", Energy and Buildings, 33(4), pp.  319{331 (2001).  32. Cook, N., Designers' Guide to EN 1991-1-4 Eurocode  1: Actions on Structures, general actions part 1-4.  Wind actions, Thomas Telford Publishing (2007).  33. Costola, D., Blocken, B., and Hensen, J.L.M.  Overview of pressure coe_cient data in building  energy simulation and airow network programs",  Building and Environment, 44(10), pp. 2027{2036  (2009).  34. Costola, D., Blocken, B., Ohba, M., and Hensen,  J.L.M. Uncertainty in airow rate calculations due  to the use of surface-averaged pressure coe_cients",  Energy and Buildings, 42(6), pp. 881{888 (2010).  35. Muehleisen, R.T. and Patrizi, S. A new parametric  equation for the wind pressure coe_cient for low-rise  buildings", Energy and Buildings, 57, pp. 245{249  (2013).  36. Deo, R.C. and Sahin, M. Application of the extreme  learning machine algorithm for the prediction of  monthly e_ective drought index in eastern Australia",  Atmospheric Research, 153, pp. 512{525 (2015).  37. Samadi, M., Jabbari, E., Azamathulla, H.M., and Mojallal,  M. Estimation of scour depth below free overfall  spillways using multivariate adaptive regression splines  and arti_cial neural networks", Engineering Applications  of Computational Fluid Mechanics, 9(1), pp.  291{300 (2015).  38. Suman, S., Mahamaya, M., and Das, S.K. Prediction  of maximum dry density and uncon_ned compressive  strength of cement stabilised soil using arti_cial intelligence  techniques", International Journal of Geosynthetics  and Ground Engineering, 2(2), p. 11 (2016).  M. Mallick et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 2967{2984 2983  39. Mehdizadeh, S., Behmanesh, J., and Khalili, K. Application  of gene expression programming to predict  daily dew point temperature", Applied Thermal Engineering,  112, pp. 1097{1107 (2017).  40. Milukow, H.A., Binns, A.D., Adamowski, J.,  Bonakdari, H., and Gharabaghi, B. Estimation of the  darcy-weisbach friction factor for ungauged streams  using gene expression programming and extreme learning  machines", Journal of Hydrology, 568, pp. 311{321  (2018).  41. Mohanta, A., Patra, K.C., and Sahoo, B. Anticipate  Manning's coe_cient in meandering compound channels",  Hydrology, 5(3), p. 47 (2018).  42. Najafzadeh, M., Rezaie-Balf, M., and Tafarojnoruz,  A. Prediction of riprap stone size under overtopping  ow using data-driven models", International Journal  of River Basin Management, 16(4), pp. 1{8 (2018).  43. Shende, S. and Chau, K.W. Forecasting safe distance  of a umping well for e_ective riverbank _ltration",  Journal of Hazardous, Toxic, and Radioactive Waste,  23(2), p. 04018040 (2018).  44. Varvani, J. and Khaleghi, M.R. A performance  evaluation of neuro-fuzzy and regression methods  in estimation of sediment load of selective  rivers", Acta Geophysica, 67(1), pp. 205{214 (2018).  45. Sheikh Khozani, Z., Bonakdari, H., and Zaji, A.H.  Mean bed shear stress estimation in a rough rectangular  channel using a hybrid genetic algorithm based on  an arti_cial neural network and genetic programming",  Scientia Iranica, 25(1), pp. 152{161 (2018).  46. Bui, D.T., Hoang, N.D., and Samui, P. Spatial  pattern analysis and prediction of forest _re using new  machine learning approach of multivariate adaptive  regression splines and di_erential ower pollination  optimization: a case study", at Lao Cai province (Viet  Nam). Journal of Environmental Management, 237,  pp. 476{487 (2019).  47. Zaji, A.H., Bonakdari, H., and Shamshirband, S.  Standard equations for predicting the discharge coe  _cient of a modi_ed high-performance side weir",  Scientia Iranica, 25(3), pp. 1057{1069 (2018).  48. Samui, P., Das, S., and Kim, D. Uplift capacity  of suction caisson in clay using multivariate adaptive  regression spline", Ocean Engineering, 38(17{18), pp.  2123{2127 (2011).  49. Samui, P. and Kurup, P. Multivariate adaptive regression  spline (MARS) and least squares support  vector machine (LSSVM) for OCR prediction", Soft  Computing, 16(8), pp. 1347{1351 (2012).  50. Samui, P. Multivariate adaptive regression spline  (Mars) for prediction of elastic modulus of jointed  rock mass", Geotechnical and Geological Engineering,  31(1), pp. 249{253 (2013).  51. Cheng, M.Y. and Cao, M.T. Accurately predicting  building energy performance using evolutionary  multivariate adaptive regression splines", Applied Soft  Computing, 22, pp. 178{188 (2014).  52. Koc, E.K. and Bozdogan, H. Model selection in  multivariate adaptive regression splines (MARS) using  information complexity as the _tness function", Machine  Learning, 101(1{3), pp. 35{58 (2015).  53. Zhang, W. and Goh, A.T. Multivariate adaptive  regression splines and neural network models for prediction  of pile drivability", Geoscience Frontiers, 7(1),  pp. 45{52 (2016).  54. Mukhopadhyay, T. A multivariate adaptive regression  splines based damage identi_cation methodology  for web core composite bridges including  the e_ect of noise", Journal of Sandwich Structures  & Materials, 20(7), pp. 885{903 (2017).  55. Bhattacharya, S., Murakonda, P., and Das, S. Prediction  of uplift capacity of suction caisson in clay  using functional network and multivariate adaptive  regression spline", Scientia Iranica, 25(2), pp. 517{531  (2018).  56. Mirabbasi, R., Kisi, O., Sanikhani, H., and  Meshram, S.G. Monthly long-term rainfall estimation  in Central India using M5Tree, MARS,  LSSVR, ANN and GEP models", Neural Computing  and Applications, 31(10), pp. 6843{6862 (2019).  57. Goh, A.T.C., Zhang, W., Zhang, Y., Xiao, Y., and  Xiang, Y. Determination of earth pressure balance  tunnel-related maximum surface settlement: a multivariate  adaptive regression splines approach", Bulletin  of Engineering Geology and the Environment, 77(2),  pp. 489{500 (2018).  58. Zhang, W., Zhang, R., and Goh, A.T. Multivariate  adaptive regression splines approach to estimate lateral  wall deection pro_les caused by braced excavations  in clays", Geotechnical and Geological Engineering,  36(2), pp. 1349{1363 (2018).  59. Friedman, J.H. Multivariate adaptive regression  splines", Annals of Statistics, 19(1), pp. 1{67 (1991).  60. Friedman, J.H. and Roosen, C.B., An Introduction to  Multivariate Adaptive Regression Splines, Sage Publications  Sage CA: Thousand Oaks, CA (1995).  61. Leathwick, J.R., Rowe, D., Richardson, J., Elith,  J., and Hastie, T. Using multivariate adaptive regression  splines to predict the distributions of New  Zealand's freshwater diadromous _sh", Freshwater Biology,  50(12), pp. 2034{2052 (2005).  62. Craven, P. andWahba, G. Smoothing noisy data with  spline functions", Numerische Mathematik, 31(4), pp.  377{403 (1978).  63. Barati, R., Rahimi, S., and Akbari, G.H. Analysis  of dynamic wave model for ood routing in natural  rivers", Water Science and Engineering, 5(3), pp. 243{  258 (2012).  2984 M. Mallick et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 2967{2984  64. Barati, R. Application of excel solver for parameter  estimation of the nonlinear Muskingum models",  KSCE Journal of Civil Engineering, 17(5), pp. 1139{  1148 (2013).  65. Akbari, G.H. and Barati, R. Comprehensive analysis  of ooding in unmanaged catchments", Proceedings of  the Institution of Civil Engineers-Water Management,  pp. 229{238 (2012).  66. Gandomi, A.H., Yun, G.J., and Alavi, A.H. An  evolutionary approach for modelling of shear strength  of RC deep beams", Materials and Structures, 46(12),  pp. 2109{2119 (2013).  67. Ebtehaj, I., Bonakdari, H., Zaji, A.H., Azimi, H., and  Khoshbin, F. GMDH-type neural network approach  for modeling the discharge coe_cient of rectangular  sharp-crested side weirs", Engineering Science and  Technology, an International Journal, 18(4), pp. 746{  757 (2015).  68. Bre, F., Gimenez, J.M., and Fachinotti, V.D. Prediction  of wind pressure coe_cients on building surfaces  using arti_cial neural networks", Energy and Buildings,  158, pp. 1429{1441 (2018).