Introducing a new co-polymeric adsorbent with fast sorption rate and high sorption capacity for removing the heavy metal ions: A thermodynamic and kinetic study

Document Type : Article

Authors

Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

Abstract

Heavy metal ions have been recognized as the most hazardous contaminants of water sources. In this study, a novel polymeric adsorbent based on 2-hydroxyethyl methacrylate (HEMA), acrylic acid (AA), and 1,4-butanediol dimethacrylate (BDDMA) was successfully synthesized and its efficiency in removal of selected heavy metal ions (Pb2+ and Cd2+) were investigated. The role of significant parameters such as pH, contact time, adsorbent dose, metal ions concentration and temperature on removing harmful metal ions were logically studied. Results showed that the amount of pH, contact time and polymer adsorbent dose had direct relation in adsorption of metal ions. While increasing metal ion concentrations have no significant effect in metal ions adsorption and that was fixed up to 15 mg/L. Adsorption isothermal process of the new polymeric adsorbent was studied by several selected models and also maximum values of adsorption capacities of the introduced adsorbent for Pb2+ and Cd2+ ions were characterized. Adsorption /desorption cycles of synthesized polymer adsorbent were around 15 times. According to the modeling of adsorption data, the pseudo-second-order kinetic equation could best describe the adsorption kinetics. According to the intra-particle diffusion studies adsorption of heavy metal ions might be dominated by external diffusion mechanism.

Keywords


References     1. Moore, J.W., Inorganic Contaminants of Surface Water,     Research and Monitoring Priorities, Springer Science     & Business Media (2012).     2. Rao, K., Mohapatra, M., Anand, S., et al. Review     on cadmium removal from aqueous solutions", Int. J.     Eng. SCI. Tech., 2(7), pp. 81{103 (2010).     3. Naiya, T.K. and Bhattacharya, A.K., Das, S.K. Adsorption     of Cd (II) and Pb (II) from aqueous solutions     on activated alumina", J. Colloid Interf. Sci., 333(1),     pp. 14{26 (2009).     4. Ceglowski, M., Gierczyk, B., Frankowski, M., et al.     A new low-cost polymeric adsorbents with polyamine     chelating groups for e_cient removal of heavy metal     ions from water solutions", React. Funct. Polym., 131,     pp. 64{74 (2018).     5. Ramrakhiani, L., Ghosh, S., and Majumdar, S. Surface     modi_cation of naturally available biomass for     enhancement of heavy metal removal e_ciency, upscaling     prospects, and management aspects of spent     biosorbents: a review", Appl. Biochem. Biotechnol.,     180(1), pp. 41{78 (2016).     6. Ahmad, M., Manzoor, K., Ahmad, S., et al. Preparation,     kinetics, thermodynamics, and mechanism     evaluation of thiosemicarbazide modi_ed green carboxymethyl     cellulose as an e_cient Cu(II) adsorbent",     J. Chem. Eng. Data., 63(6), pp. 1905{1916 (2018).     7. Ahmsad, M., Manzoor, K., Chaudhuri, R.R., et al.     Thiocarbohydrazide cross-linked oxidized Chitosan     and Poly(vinyl alcohol): A green framework as e_cient     Cu(II), Pb(II), and Hg(II) adsorbent", J. Chem. Eng.     Data, 62(7), pp. 2044{2055 (2017).     8. Ahmad, M., Manzoor, K., and Ikram, S. Versatile nature     of hetero-chitosan based derivatives as biodegradable     adsorbent for heavy metal ions, a review", Int. J.     Biol. Macromolecules, 105, pp. 190{203 (2017).     9. Ahmad, M., Manzoor, K., Venkatachalam, P., et al.     Kinetic and thermodynamic evaluation of adsorption     of Cu(II) by thiosemicarbazide chitosan", Int. J. Biol.     Macromolecules, 92, pp. 910{919 (2016).     10. Carolin, C.F., Kumar, P.S., Saravanan, A., et al. E_-     cient techniques for the removal of toxic heavy metals     from aquatic environment: a review", J. Environ.     Chem. Eng., 5(3), pp. 2782{2799 (2017).     11. Selvi, A., Rajasekar, A., Theerthagiri, J., et al. Integrated     remediation processes toward heavy metal removal/     recovery from various environments: a review",     Fron. Environ. Sci., 7(66), p. 2 (2019).     12. Barakat, M.A. New trends in removing heavy metals     from industrial wastewater", Arab. J. Chem., 4(4), pp.     361{377 (2011).     13. Muhammad Ekramul Mahmud, H.N., Huq, A.K.O.,     and Yahya, R.B. The removal of heavy metal ions     from wastewater/aqueous solution using polypyrrolebased     adsorbents: a review", RSC Adv., 6(18), pp.     14778{14791 (2016).     14. Li, N., Wei, X., Mei, Z., et al. Synthesis and characterization     of a novel polyamidoamine-cyclodextrin     crosslinked copolymer", Carbohyd. Res., 346(13), pp.     1721{1727 (2011).     15. Alsohaimi, I.H., Wabaidur, S.M., Kumar, M., et     al. Synthesis, characterization of PMDA/TMSPEDA     1450 R. Abdolahi et al./Scientia Iranica, Transactions C: Chemistry and ... 28 (2021) 1436{1451     hybrid nanocomposite and its applications as an adsorbent     for the removal of bivalent heavy metals ions",     Chem. Eng. J., 270, pp. 9{21 (2015).     16. Zhou, G., Luo, J., Liu, C., et al. A highly e_-     cient polyampholyte hydrogel sorbent based _xed-bed     process for heavy metal removal in actual industrial     e_uent", Water Res., 89, pp. 151{160 (2016).     17. Jafari, S., Dehghani, M., Nasirizadeh, N., et al. Synthesis     and characterisation of a selective adsorbent     based on the molecularly imprinted polymer for the     removal of cloxacillin antibiotic residue from milk",     Int. J. Dairy. Technol., 70, pp. 1{10 (2019).     18. Jafari, S., Dehghani, M., Nasirizadeh, N., et al. Labelfree     electrochemical detection of cloxacillin antibiotic     in milk samples based on molecularly imprinted polymer     and graphene oxide-gold nanocomposite", Measurement,     145, pp. 22{29 (2019).     19. Chen, C.Y. and Chen, C.Y. Stability constants of     polymer-bound iminodiacetate-type chelating agents     with some transition-metal ions", J. Appl. Polym. Sci.,     86(8), pp. 1986{1994 (2002).     20. Wang, L., Yang, L., Li, Y., et al. Study on adsorption     mechanism of Pb (II) and Cu (II) in aqueous solution     using PS-EDTA resin", Chem. Eng. J., 163(3), pp.     364{372 (2010).     21. Chen, C.Y. and Chen, S.Y. Adsorption properties     of a chelating resin containing hydroxy group and     iminodiacetic acid for copper ions", J. Appl. Polym.     Sci., 94(5), pp. 2123{2130 (2004).     22. Das, N. Remediation of radionuclide pollutants     through biosorption - an overview", Clean-Soil Air     Water, 40(1), pp. 16{23 (2012).     23. Chen, C.-Y. and Chen, C.-Y. Stability constants of     water-soluble and latex types of chelating polymers     containing iminodiacetic acid with some transitionmetal     ions", Eur. Polym. J., 39(5), pp. 991{1000     (2003).     24. Langmuir, I. The adsorption of gases on plane surfaces     of glass, mica and platinum", J. Am. Chem. soc.,     40(9), pp. 1361{1403 (1918).     25. Freundlich, H. Uber die adsorption in losungen", Z.     Phys. Chem., 57(1), pp. 385{470 (1907).     26. Temkin, M. and Pyzhev, V. Recent modi_cations to     Langmuir isotherms", Acta Physico-Chimica Sinica,     12, pp. 217{222 (1940).     27. Dubinin, M. Modern state of the theory of volume     _lling of micropore adsorbents during adsorption of     gases and steams on carbon adsorbents", Zh. Fiz.     Khim+, 39(19), pp. 1305{1317 (1965).     28. Yousef, R.I., El-Eswed, B., and Ala'a, H. Adsorption     characteristics of natural zeolites as solid adsorbents     for phenol removal from aqueous solutions: kinetics,     mechanism, and thermodynamics studies", Chem.     Eng. J., 171(3), pp. 1143{1149 (2011).     29. Yusan, S., Gok, C., Erenturk, S., et al. Adsorptive removal     of thorium (IV) using calcined and ux calcined     diatomite from Turkey: evaluation of equilibrium,     kinetic and thermodynamic data", Appl. Clay. Sci.,     67, pp. 106{116 (2012).     30. Ghasemi, Z., Seif, A., Ahmadi, T.S., et al. Thermodynamic     and kinetic studies for the adsorption of Hg (II)     by nano-TiO2 from aqueous solution", Adv. Powder     Technol., 23(2), pp. 148{156 (2012).     31. Ho, Y.-S. Second-order kinetic model for the sorption     of cadmium onto tree fern: a comparison of linear and     non-linear methods", Water Research, 40(1), pp. 119{     125 (2006).     32. Weber, W.J. and Morris, J.C. Kinetics of adsorption     on carbon from solution", J. Sanit. Eng. Div., 89(2),     pp. 31{60 (1963).     33. Ho, Y.-S. and Ofomaja, A.E. Kinetics and thermodynamics     of lead ion sorption on palm kernel _bre     from aqueous solution", Process Biochem., 40(11), pp.     3455{3461 (2005).     34. Figaro, S., Avril, J., Brouers, F., et al. Adsorption     studies of molasse's wastewaters on activated carbon:     Modelling with a new fractal kinetic equation and evaluation     of kinetic models", J. Hazard. Mater., 161(2{     3), pp. 649{656 (2009).     35. Cheng, B., Le, Y., Cai, W., et al. Synthesis of     hierarchical Ni (OH) 2 and NiO nanosheets and their     adsorption kinetics and isotherms to Congo red in     water", J. Hazard. Mater., 185(2{3), pp. 889{897     (2011).     36. Hameed, B., Tan, I., and Ahmad, A. Adsorption     isotherm, kinetic modeling and mechanism of 2, 4, 6-     trichlorophenol on coconut husk-based activated carbon",     Chem. Eng. J., 144(2), pp. 235{244 (2008).     37. Siahkamari, M., Jamali, A., Sabzevari, A., et al.     Removal of lead (II) ions from aqueous solutions     using biocompatible polymeric nano-adsorbents: A     comparative study", Carbohyd. Polym., 157, pp. 1180{     1189 (2017).     38.  Ozcan, A., Oncu, E.M., and  Ozcan, A.S. Kinetics,     isotherm and thermodynamic studies of adsorption of     acid blue 193 from aqueous solutions onto natural     sepiolite", Colloid Surface A., 277(1{3), pp. 90{97     (2006).     39. Liu, Y., Hu, L., Yao, Y., et al. Construction of     composite chitosan-glucose hydrogel for adsorption of     Co2+ ions", Int. J. Biol. Macromol., 139, pp. 213{220     (2019).