References
1. Chin-Lung, Y., Kuan-Wei, C., and Chung-De, C.
Model and characterization of a press-button-type
piezoelectric energy harvester", IEEE/ASME Transactions
on Mechatronics, 24(1), pp. 132{143 (2019).
2. Schoeftner, J. and Buchberger, G. A contribution
on the optimal design of a vibrating cantilever in
a power harvesting application-optimization of piezoelectric
layer distributions in combination with advanced
harvesting circuits", Eng Struct., 53, pp. 92{
101 (2013).
3. Luo, Q. and Tong, L. Design and testing for shape
control of piezoelectric structures using topology optimization",
Eng. Struct., 97, pp. 90{104 (2015).
4. Hongseok, L., Hongseok, J., Jongkyu, P., et al. Design
of a piezoelectric energy-harvesting shock absorber
system for a vehicle", Integrated Ferroelectrics, 141,
pp. 32{44 (2013).
5. Wei, C. and Taghavifar, H. A novel approach to
energy harvesting from vehicle suspension system:
half-vehicle model", Energy, 134, pp. 279{288 (2017).
6. Khoshnoud, F., Sundar, D.B., Badi, M.N.M., et al.
Energy harvesting from suspension systems using
regenerative force actuators", Int. J. Veh. Noise Vib.,
9(3{4), pp. 294{311 (2013).
7. Takashi, O. and Kanae, H. Bioinspired
appingwing
robot with direct-driven piezoelectric actuation
and its takeo demonstration", IEEE Robotics and
Automation Letters, 3(4), pp. 4217{4224 (2018).
8. Xie, X.D., Wang, Q., and Wu, N. Energy harvesting
from transverse ocean waves by a piezoelectric plate",
International Journal of Engineering Science, 81, pp.
41{48 (2014).
9. Song, R., Shan , X., Lv, F., et al. A study of vortexinduced
energy harvesting from water using PZT
piezoelectric cantilever with cylindrical extension",
Ceramics International, 41, pp. 768{773. (2015).
10. Shan, X., Song, R., Liu, B., et al. Novel energy
harvesting: A macro ber composite piezoelectric
energy harvester in the water vortex", Ceramics International,
41, pp. 763{767 (2015).
11. Na, Y., Lee, H.S., and Park, J.K. A study on
piezoelectric energy harvester using kinetic energy of
ocean", Journal of Mechanical Science and Technology,
32(10), pp. 4747{4755 (2018).
12. Acciari, G., Caruso, M., Miceli, R., et al. Piezoelectric
rainfall energy harvester performance by an advanced
Arduino-based measuring system", IEEE Transactions
on Industry Applications, 54(1), pp. 458{468 (2018).
13. Wang, W., Cao, J., Bowen, C.R., et al. Optimum
resistance analysis and experimental veri cation of
nonlinear piezoelectric energy harvesting from human
motion", Energy, 118, pp. 221{230 (2017).
14. Turkmen, A.C. and C elik, C. Energy harvesting with
the piezoelectric material integrated shoe", Energy,
150, pp. 556{564 (2018).
15. Amini, Y., Emdad, H., and Farid, M. Piezoelectric
energy harvesting from vertical piezoelectric beams in
the horizontal
uid
ow", Scientia Iranica, B, 24(5),
pp. 2396{2405 (2017).
16. Abdelmoula, H. and Abdelke , A. The potential of
electrical impedance on the performance of galloping
systems for energy harvesting and control applications",
Journal Sound and Vibration, 370, pp. 191{208
(2016).
17. Javed, U., Dai, H.L., and Abdelke , A. Nonlinear
dynamics and comparative analysis of hybrid
piezoelectric-inductive energy harvesters subjected to
galloping vibrations", The European Physical Journal
Special Topics, 224, pp. 2929{2948 (2015).
18. Yan, Z., Abdelke , A., and Hajj, M.R. Piezoelectric
energy harvesting from hybrid vibrations", Smart Materials
and Structures, 23(2), pp. 1{14 (2014).
19. Abdelke , A., Hasanyan, A., Montgomery, J., et al.
Incident
ow e ects on the performance of piezoelectric
energy harvesters from galloping vibrations",
Theor. Appl. Mech. Lett., 4, 022002 (2014).
S. Akkaya Oy/Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 3504{3511 3511
20. Shan, X., Song, R., Fan, M., et al. Energy-harvesting
performances of two tandem piezoelectric energy harvesters
with cylinders in water", Applied Science, 6(8),
p. 230 (2016).
21. Song, R., Shan, X., Lv, F., et al. A novel piezoelectric
energy harvester using the macro ber composite cantilever
with a bicylinder in water", Applied Sciences,
5(4), pp. 1942{1954 (2015).
22. Zhang, M., Liu, Y., and Cao, Z. Modeling of
piezoelectric energy harvesting from freely oscillating
cylinders in water
ow", Mathematical Problems in
Engineering, 1, pp. 1-13 (2014).
23. McCarthy, J.M., Watkins, S., Deivasigamani, A., et
al. An investigation of
uttering piezoelectric energy
harvesters in o -axis and turbulent
ows", J. Wind
Eng. Ind. Aerodyn., 136, pp. 101{113 (2015).
24. Zhou, S. and Wang, J. Dual serial vortex-induced
energy harvesting system for enhanced energy harvesting",
AIP Advances, 8(7), p. 075221 (2018).
25. Johar, M.A., Kang, J.H., Hassan, M.A., et al. A
scalable,
exible and transparent GaN based heterojunction
piezoelectric nanogenerator for bending, air-
ow and vibration energy harvesting", Applied Energy,
222, pp. 781{789 (2018).
26. Ju, S. and Ji, C.H. Impact-based piezoelectric vibration
energy harvester", Applied Energy, 214, pp. 139{
151 (2018).
27. Sang, Y., Huang, X., Liu, H., et al. Vibration-based
hybrid energy harvester for wireless sensor systems",
IEEE Transactions on Magnetics, 48(11), pp. 4495{
4498 (2012).
28. Akkaya Oy, S. and Ozdemir, A.E. Piezoelectric based
low power wind generator design and testing", Arabian
Journal for Science and Engineering, 43(6), pp. 2759{
2767 (2018).
29. Xie, X.D. and Wang, Q. A study on a high ecient
cylinder composite piezoelectric energy harvester",
Composite Structures, 161, pp. 237{245 (2017).
30. Song, H.C., Kumar, P., Maurya, D., et al. Ultra-low
resonant piezoelectric MEMS energy harvester with
high power density", Journal of Micro Electromechanical
Systems, 26(6), pp. 1226{1234 (2017).
31. Do, X., Nguyen, H., Han, S., et al. Self-powered
high-eciency recti er with automatic resetting of
transducer capacitance in piezoelectric energy harvesting
systems", IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 23(3), pp. 444{453
(2015).
32. Li, Y. Simple techniques for piezoelectric energy
harvesting optimization", PhD Thesis, INSA de Lyon,
France (2014).
33. Ozdemir, A. A Novel circuit topology for piezoelectric
transducers in a piezoelectric energy harvester",
IET Renewable Power Generation, 13, pp. 2105{2110
(2019).
34. Ikeda, T., Fundamentals of Piezoelectricity, Oxford
University Press, New York (1996).
35. Saida, M., Zaibi, G., Samet, M., et al. Design and
study of piezoelectric energy harvesting cantilever from
human body", Hammamet, Tunisia, Mar. 19{22, pp.
164{168 (2018).