1. Teng, J.G., Yu, T., Wong, Y.L., and Dong, S.L. Hybrid FRP-concrete-steel tubular columns: concept and behavior", J Constr Build Mater, 21, pp. 846{854 (2007). 2. Ozbakkaloglu, T. and Oehlers, D.J. Manufacture and testing of a novel FRP tube con_nement system", Eng Struct, 30(9), pp. 2448{2459 (2008). 3. Mohamed, H.M. and Masmoudi, R. Axial load capacity of concrete-_lled FRP tube columns: experimental versus theoretical prediction", J Compos Constr, 14(2), pp. 231{243 (2010). 4. Dundar, C., Erturkmen, D., and Tokgoz, S. Studies on carbon _ber polymer con_ned slender plain and steel _ber rein forced concrete columns", Eng. Struct, 102, pp. 31{39 (2015). 5. Youssf, O., ElGawady, M.A., and Mills, J.E. Displacement and plastic hinge length of FRP con_ned circular reinforced concrete columns", Eng Struct, 101, pp. 465{476 (2015). 6. Choudhury, M.S.I., Amin, A.F.M.S., Islam, M.M., and Hasnat, A. E_ect of con_ning pressure distribution on the dilation behavior in FRP-con_ned plain concrete columns using stone, brick and recycled aggregates", Constr Build Mater, 102, pp. 541{551 (2016). 7. Davol, A., Burgueno, R., and Seible, F. Flexural behavior of circular concrete _lled FRP shells", J Struct Eng, 127(7), pp. 810{817 (2001). 8. ElGawady, M.A., Booker, A.J., and Dawood, H.M. Seismic behavior of post tensioned concrete-_lled 1696 M. Ishaqian and A. Keramati/Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 1685{1698 _ber tubes", J Compos Constr ASCE, 14(5), pp. 616{ 628 (2010). 9. Yan, L. and Chou, N. Compressive and exural behaviour and theoretical analysis of ax _bre reinforced polymer tube encased coir _bre reinforced concrete composite", Mater Des, 52, pp. 801{811 (2013). 10. Abouzied, A. and Masmoudi, R. Structural performance of new fully and partially concrete _lled rectangular FRP-tube beams", Constr Build Mater, 101, pp. 652{660 (2015). 11. Huang, L., Sun, X., Yan, L., and Zhu, D. Compressive behavior of concrete con_ned with GFRP tubes and steel spirals", Polymers, 7(5), pp. 851{875 (2015). 12. Xie, T. and Ozbakkaloglu, T. Behavior of recycled aggregate concrete-_lled basalt and carbon FRP tubes", Constr Build Mater, 105, pp. 132{143 (2016). 13. Shao, Y., Zhu, Z., and Mirmiran, A. Cyclic modeling of FRP-con_ned concrete with improved ductility", Cement and Concrete Composites, 28(10), pp. 959{ 968 (2006). 14. Varma, R.K., Barros, J.A.O., Sena-Cruz, J., and Ferreira, D.M. A model to simulate the cyclic axial compressive behavior of RC columns con_ned with CFRP sheets", Portugal: CCC, University of Minho (2008). 15. Barros, J.A.O. and Ferreira, D.R.S.M. Partial versus full wrapping con_nement systems for concrete columns", International Conference on Concrete Repair. Rehabilitation and Retro_tting, South Africa, pp. 1123{1129 (2008). 16. Teng, J.G., Yu, T., Wong, Y.L., and Dong, S.L. Hybrid FRP-concrete-steel tubular columns: concept and behavior", Constr Build Mater, 21(4), pp. 846{ 854 (2007). 17. Lim, J.C. and Ozbakkaloglu, T. Stress-strain model for normal- and light-weight concretes under uniaxial and triaxial compression", Constr Build Mater, 102, pp. 541{551 (2016). 18. Wong, Y.L., Yu, T., Teng, J.G., and Dong, S.L. Behavior of FRP-con_ned concrete in annular section columns", Compos Part B, 38, pp. 451{466 (2008). 19. Yu, T. and Teng, J.G. Behavior of hybrid FRPconcrete- steel double-skin tubular columns with a square outer tube and a circular inner tube subjected to axial compression", J Compos Constr ASCE, 17(2), pp. 271{279 (2013). 20. Fanggi, B.A.L. and Ozbakkaloglu, T. Behavior of hollow and concrete-_lled FRP-HSC and FRP-HSCsteel composites columns subjected to concentric compression", Adv Struct Eng, 18(5), pp. 715{738 (2015). 21. Fanggi, B.A.L. and Ozbakkaloglu, T. Square FRPHSC- steel composite columns: behavior under axial compression", Eng Struct, 92, pp. 156{171 (2015). 22. Ozbakkaloglu, T. A novel FRP-dual-grade concretesteel composite column system", Thin-Walled Struct, 96, pp. 295{306 (2015). 23. Ozbakkaloglu, T., Fanggi, B.A.L., and Zheng, J. Con_nement model for concrete in circular and square FRP-concrete-steel double-skin composite columns", Materials and Design, 96, pp. 458{469 (2016). 24. Ozbakkaloglu, T. and Fanggi, B.A.L. FRP-HSC-steel double-skin tubular columns: behavior under monotonic and cyclic axial compression", Mater Struct, 48, pp. 1075{1093 (2015). 25. Yu, T., Zhang, B., Cao, Y.B., and Teng, J.G. Behavior of hybrid FRP-concrete-steel double skin tubular columns subjected to cyclic axial compression", Thin- Walled Structures, 61, pp. 196{203 (2012). 26. Han, L.H., Tao, Z., Liao, F.Y., and Xu, Y. Tests on cyclic performance of FRP-concrete-steel double-skin tubular columns", Thin-Walled Struct, 48(6), pp. 430{ 439 (2010). 27. Zhang, B., Teng, J.G., and Yu, T. Experimental behavior of hybrid FRP-concrete-steel double-skin tubular columns under combined axial compression and cyclic lateral loading", Eng Struct, 99, pp. 214{ 231 (2015). 28. Cui, C. and Sheikh, S.A. Experimental study of normal-and high-strength concrete con_ned with _berreinforced polymers", J Compos Constr, 14(5), pp. 553{561 (2010). 29. Xiao, QG., Teng, J.G., and Yu, T. Behavior and modeling of con_ned high-strength concrete", J Compos Constr, 14(3), pp. 249{259 (2010). 30. Zohrevand, P. and Mirmiran, A. Behavior of ultrahigh-performance concrete con_ned by _berreinforced polymers", J Mater Civ Eng, 23(12), pp. 1727{1734 (2011). 31. Pham, T.M. and Hadi, M.N. Con_nement model for FRP con_ned normal-and high-strength concrete circular columns", Constr Build Mater, 69, pp. 83{90 (2014). 32. Ozbakkaloglu, T. Axial compressive behavior of square and rectangular high-strength concrete-_lled FRP tubes", J Compos Constr ASCE, 17(1), pp. 151{ 161 (2013). 33. Idris, Y. and Ozbakkaloglu, T. Seismic behavior of high-strength concrete-_lled FRP tube columns", J Compos Constr, 17(6), 04013013 (2013). https://doi.org/10.1061/(ASCE)CC.1943- 5614.0000388 34. Ozbakkaloglu, T. Behavior of square and rectangular ultra high-strength concrete-_lled FRP tubes under axial compression", Compos B Eng, 54, pp. 97{111 (2013). 35. Nataraja, M.C., Dhang, N., and Gupta, A.P. Stressstrain curves for steel-_ber reinforced concrete under compression", Cem Concr Compos, 21(5), pp. 383{390 (1999). M. Ishaqian and A. Keramati/Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 1685{1698 1697 36. Bhargava, P., Sharma, U.K., and Kaushik, S.K. Compressive stress-strain behavior of small scale steel _bre reinforced high strength concrete cylinders", J Adv Concr Technol, 4(1), pp. 109{121 (2006). 37. Chi, Y., Xu, L., and Zhang, Y. Experimental study on hybrid _ber-reinforced concrete subjected to uniaxial compression", J Mater Civ Eng, 26(2), pp. 211{8 (2012). 38. Hassan, A.M.T., Jones, S.W., and Mahmud, G.H. Experimental test methods to determine the uniaxial tensile and compressive behavior of ultra-high performance _bre reinforced concrete (UHPFRC)", Constr Build Mater, 37, pp. 874{882 (2012). 39. Caballero-Morrison, K.E., Bonet, J.L., Navarro- Gregori, J., and Serna-Ros, P. An experimental study of steel _ber-reinforced high-strength concrete slender columns under cyclic loading", Eng Struct, 57, pp. 565{577 (2013). 40. Xie, T. and Ozbakkaloglu, T. Behavior of steel _ber-reinforced high-strength concrete-_lled FRP tube columns under axial compression", Eng Struct, 90, pp. 158{171 (2015). 41. Mandal, S., Hoskin, A., and Fam, A. Inuence of concrete strength on con_nement e_ectiveness of _berreinforced polymer circular jackets", ACI Struct J, 102(3), pp. 383{392 (2005). 42. Vincent, T. and Ozbakkaloglu, T. Inuence of concrete strength and con_nement method on axial compressive behavior of FRP con_ned high-and ultra highstrength concrete", Compos B Eng, 50, pp. 413{428 (2013). 43. Wu, H.L., Wang, Y.F., Yu, L., and Li, X.R. Experimental and computational studies on high strength concrete circular columns con_ned by aramid _berreinforced polymer sheets", J Compos Constr, 13(2), pp. 125{134 (2009). 44. Li, G., Torres, S., Alaywan, W., and Abadie, C. Experimental study of FRP tube-encased concrete columns", J Compos Mater, 39(13), pp. 1131{1145 (2005). 45. Vincent, T. and Ozbakkaloglu, T. Inuence of concrete strength and con_nement method on axial compressive behavior of FRP con_ned high-and ultra highstrength concrete", Compos B Eng, 50, pp. 413{428 (2013). 46. Jian, C., Lim, T., and Ozbakkaloglu, T. Stress-strain model for normal- and light-weight concretes under uniaxial and triaxial compression", Construction and Building Materials, 71, pp. 492{509 (2014). 47. Karimi, K., Tait, M.J., and El-Dakhakhni, W.W. Testing and modeling of a novel FRP-encased steelconcrete composite column", J compos struct, 93(5), pp. 1463{1473 (2011). 48. Nanni, A., Fiber Reinforced Plastic (FRP) Reinforcement for Concrete Structures, Properties and Application, Amsterdam: Elsevier (1993). 49. Vitiello, E., Buccino, F., Cucchi, A., and De Salve, P.L. Association of glass _ber reinforced plastic (GFRP) and concrete for a new type of slab", In: International Conference on New Technologies in Structural Engineering, Lisbon, Portugal, pp. 65{72 (1997). 50. Biddah, A. Structural reinforcement of bridge decks using pultruded GFRP grating", J Compos Struct, 74, pp. 80{88 (2008). 51. He, J., Liu, Y., Chen, A., and Dai, L. Experimental investigation of movable hybrid GFRP and concrete bridge deck", Constr Build Mater, 26, pp. 49{64 (2012). 52. Kim, Y.J. and Fam, A. Numerical analysis of pultruded GFRP box girders supporting adhesivelybonded concrete deck in exure", Eng Struct, 33, pp. 3527{3536 (2011). 53. Kabir, M.Z. and Eshaghian, M. Flexural upgrading of steel-concrete composite girders using externally bonded CFRP reinforcement", Appl Compos Mater, 17, pp. 209{224 (2010). 54. Carey, S.A. and Harries, K.A. Axial behavior and modeling of con_ned small-, medium-, and large-scale circular sections with carbon _ber-reinforced polymer jackets", ACI Struct J, 102(4), pp. 596{604 (2005). 55. Mourad, S.M. Sand hannag, M.J. Repair and strengthening of reinforced concrete square columns using ferrocement jackets", Cement & Concrete Composites, 34(2), pp. 288{294 (2012). 56. Ma, C.K., Awang, A.Z., and Omar, W. Flexural ductility design of con_ned high-strength concrete columns", Theoretical modeling Measurement, 78, pp. 42{48 (2016). 57. Youm, K.S., Cho, J.Y., Lee, Y.H., and Kim, J.J. Seismic performance of modular columns made of concrete _lled FRP tubes", Engineering Structures, 57, pp. 37{50 (2013). 58. Shih, T.H., Chen, C.C., Weng, C.C., and Yin, S.Y.L. Axial strength and ductility of square composite columns with two interlocking spirals", Journal of Constructional Steel Research, 90, pp. 184{192 (2013). 59. Barros, J.A.O., Ferreira, D.R.S.M., and Varma, R.K., CFRP-Con_ned Reinforced Concrete Elements Subjected to Cyclic Compressive Loading, Portugal: University of Minho, CCC (2008). 60. ANSYS, ANSYS online manual (12.1), Canonsburg, PA, USA (2014). 61. Tsai, S.W. and Wu, E.M. A general theory of anisotropic materials", J Compos Mater, 5, pp. 58{80 (1971). 62. Jones, R.M., Mechanics of Composite Materials, Taylor & Francis (1998). 63. Willam, K.J. and Warnke, E.D. Constitutive model 1698 M. Ishaqian and A. Keramati/Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 1685{1698 for the triaxial behavior of concrete", In: Proceedings of the International Association for Bridge and Structural Engineering, 19, pp. 1{30 (1975).