Evolution of IT, management and industrial engineering research: A topic model approach

Document Type : Article


1 School of Industrial Engineering, Iran University of Science and Technology (IUST), University Ave. Narmak, 16846-13114, Tehran, Iran

2 School of Computer Engineering, Iran University of Science and Technology (IUST), University Ave. Narmak, 16846-13114, Tehran, Iran


Information Technology (IT), Management and Industrial Engineering are correlated academic disciplines which their publications rose significantly over the last decades. The aim of this study is analyzing the research evolution, determining the important topics and areas and depiction the trend of interdisciplinary topics in these domains. To accomplish this, the text mining techniques are used and the combination of bibliographic analysis and topic modeling approach are applied on their publications in the WOS repository over the last 20 years. In the topic extraction process, a heuristic function was suggested to key extraction, and some new applicable criteria were defined to compare the topics. Moreover, a novel approach was proposed to determine the high-level category for each topic. The results determined the hot-important topics and incremented, decremented and fixed topics are identified. Subsequently, comparing the high-level research areas confirmed the strong scientific relationships between them. This study presents a deep knowledge about internal research evolution of domains and illustrates the effect of topics on each other over the past 20 years. Furthermore, the methodology of this study could be applied to determine the interdisciplinary topics and observe the research evolution of other academic domains.


References   1. Pfei_er, A., Close Link Between Engineering and   Business Management, in The New York Times (2009).   2. Porter, A. and Rafols, I. Is science becoming more   interdisciplinary? Measuring and mapping six research   _elds over time", Scientometrics, 81, pp. 719{745   (2009).   3. He, W. and Xu, L. A state-of-the-art survey of cloud   manufacturing", International Journal of Computer   Integrated Manufacturing, 28, pp. 239{250 (2015).   4. Heilig, L. and Vo_, S. A scientometric analysis of   cloud computing literature", IEEE Transactions on   Cloud Computing, 2, pp. 266{278 (2014).   5. Jin, J., Leem, C., and Lee, C. Research issues   and trends in industrial productivity over 44 years",   International Journal of Production Research, 54, pp.   1273{1284 (2016).   6. Ronda-Pupo, G. Knowledge map of Latin American   research on management: Trends and future   advancement", Social Science Information, 55, pp. 3{   27 (2016).   7. Sedighi, M. and Jalalimanesh, A. Mapping research   trends in the _eld of knowledge management",   Malaysian Journal of Library & Information Science,   19, pp. 71{85 (2017).   8. Seth, D., Seth, D., Shrivastava, R., Shrivastava, S.,   and Shrivastava, S. An empirical investigation of   critical success factors and performance measures for   green manufacturing in cement industry", Journal of   Manufacturing Technology Management, 27, pp. 1076{   1101 (2016).   9. Wagner, C., Roessner, J., Bobb, K., et al. Approaches   to understanding and measuring interdisciplinary scienti   _c research (IDR): A review of the literature",   Journal of Informetrics, 5, pp. 14{26 (2011).   10. Wagner, A., Roessner, J., Bobb, K., et al. Approaches   to understanding and measuring interdisciplinary scienti   _c research (IDR): A review of the literature",   Journal of Informetrics, 5, pp. 14{26 (2011).   11. Gar_eld, E., Sher, I., and Torpie, R. The use of citation   data in writing the history of science," Institute   for Scienti_c Information Inc Philadelphia, PA (1964).   M. Rabiei et al./Scientia Iranica, Transactions E: Industrial Engineering 28 (2021) 1830{1852 1849   12. Small, H. A co-citation model of a scienti_c specialty:   A longitudinal study of collagen research", Social   Studies of Science, 7, pp. 139{166 (1977).   13. Fu, H. and Ho, Y. Highly cited Antarctic articles   using science citation index expanded: a bibliometric   analysis", Scientometrics, 109, pp. 337{357 (2016).   14. Osei-Kyei, R. and Chan, A. Review of studies on the   critical success factors for Public-Private Partnership   (PPP) projects from 1990 to 2013", International   Journal of Project Management, 33, pp. 1335{1346   (2015).   15. Amado, A., Cortez, P., Rita, P., and Moro, S.   Research trends on big data in marketing: A text   mining and topic modeling based literature analysis",   European Research on Management and Business Economics,   24, pp. 1{7 (2018).   16. Choi, H.S., Lee, W.S., and Sohn, S. Analyzing   research trends in personal information privacy using   topic modeling", as Computers & Security, 67, pp.   244{253 (2017).   17. De Battisti, F., Ferrara, A., and Salini, S. A decade   of research in statistics: a topic model approach",   Scientometrics, 103, pp. 413{433 (2015).   18. Gerdsri, N., Kongthon, A., and Puengrusme, S. Pro-   _ling the research landscape in emerging areas using   bibliometrics and text mining: A case study of biomedical   engineering (BME) in Thailand", International   Journal of Innovation and Technology Management,   14, p. 1740011 (2017).   19. Yau, C.-K., Porter, A., Newman, N., and Suominen, A.   Clustering scienti_c documents with topic modeling",   Scientometrics, 100, pp. 767{786 (2014).   20. Furrer, O., Thomas, H., and Goussevskaia, A. The   structure and evolution of the strategic management   _eld: A content analysis of 26 years of strategic   management research", International Journal of Management   Reviews, 10, pp. 1{23 (2008).   21. Cancino, C., Merig_o, J.M, Coronado, F., Dessouky,   Y., and Dessouky, M. Forty years of Computers   & Industrial Engineering: A bibliometric analysis",   Computers & Industrial Engineering, 113, pp. 614{   629 (2017).   22. Lee, W.S. and Sohn, S.Y. E_ects of standardization   on the evolution of information and communications   technology", Technological Forecasting and Social   Change, 132, pp. 308{317 (2018).   23. Gaur, A. and Kumar, M. A systematic approach to   conducting review studies: An assessment of content   analysis in 25 years of IB research", Journal of World   Business, 53, pp. 280{289 (2018).   24. Hosseini, S., Ivanov, D., and Dolgui, A. Review   of quantitative methods for supply chain resilience   analysis", Transportation Research Part E: Logistics   and Transportation Review, 125, pp. 285{307 (2019).   25. Jones, S.S., Rudin, R.S., Perry, T., and Shekelle,   P.G. Health information technology: an updated   systematic review with a focus on meaningful use",   Annals of Internal Medicine, 160, pp. 48{54 (2014).   26. Shi, Y. and Liu, X. Research on the literature of green   building based on the web of science: A scientometric   analysis in CiteSpace (2002-2018)", Sustainability, 11,   p. 3716 (2019).   27. Mork_unait_e, _Z., Kalibatas, D., and Kalibatien_e, D.   A bibliometric data analysis of multi-criteria decision   making methods in heritage buildings", Journal of   Civil Engineering and Management, 25, pp. 76{99   (2019).   28. Rabiei, M., Hosseini-Motlagh, S.-M., and Haeri, A.   Using text mining techniques for identifying research   gaps and priorities: a case study of the environmental   science in Iran", Scientometrics, 110, pp. 815{842   (2017).   29. Liao, H., Tang, M., Luo, L., Li, C., Chiclana, F., and   Zeng, X.J. A bibliometric analysis and visualization   of research", Sustainability, 10, p. 166 (2018).   30. Sedighi, M. and Jalalimanesh, A. Mapping research   trends in the _eld of knowledge management",   Malaysian Journal of Library & amp; Information   Science, 19, pp. 71{85, 2017-03-22 (2017).   31. Thomson-Results (2017, 8/12/2017). Web of   ScienceTM Core Collection Help. Available:   http://images.webofknowledge.com/WOKRS524B8/   help/WOS/hp subject category terms tasca.html   32. Elango, B. and Ho, Y.S. Top-cited articles in the   _eld of tribology : A bibliometric analysis", Journal   of Scientometrics and Information Management, 12,   pp. 289{307 (2018).   33. Kim, M.C. and Zhu, Y. Scientometrics of scientometrics:   mapping historical footprint and emerging   technologies in scientometrics", in Scientometrics, Ed:   IntechOpen, p. 9 (2018).   34. Klarenbeek, T. and Bosho_, N. Measuring multidisciplinary   health research at South African universities:   a comparative analysis based on co-authorships and   journal subject categories", Scientometrics, 116, pp.   1461{1485 (2018).   35. Lin, H., Zhu, Y., Ahmad, N., and Han, Q. A scientometric   analysis and visualization of global research   on brown_elds", Environmental Science and Pollution   Research, 26, pp. 17666{17684 (2019).   36. Fu, H-Z., Wang, M-H., and Ho, Y-S. The most frequently   cited adsorption research articles in the Science   Citation Index (Expanded)", Journal of Colloid and   Interface Science, 379, pp. 148{156 (2012).   37. Blei, D.M. Probabilistic topic models", Communications   of the ACM, 55, pp. 77{84 (2012).   38. Hu, Z., Fang, S., and Liang, T. Empirical study   of constructing a knowledge organization system of   patent documents using topic modeling", Scientometrics,   100, pp. 787{799 (2014).   39. Landauer, T.K., Foltz, P.W., and Laham, D. An   introduction to latent semantic analysis", Discourse   Processes, 25, pp. 259{284 (1998).   1850 M. Rabiei et al./Scientia Iranica, Transactions E: Industrial Engineering 28 (2021) 1830{1852   40. Hofmann, T. Probabilistic latent semantic indexing",   in Proceedings of the 22nd Annual International ACM   SIGIR Conference on Research and Development in   Information Retrieval, pp. 50{57 (1999).   41. Blei, D.M., Ng, Andrew, Y., and Jordan, M.I. Latent   Dirichlet allocation", Journal of Machine Learning   Research, 3, pp. 993{1022 (2003).   42. Gri_ths, T.L., Jordan, M.I., Tenenbaum, J.B., and   Blei, D.M. Hierarchical topic models and the nested   Chinese restaurant process", in Advances in Neural   Information Processing Systems, pp. 17{24 (2004).   43. La_erty, J.D. and Blei, D.M. Correlated topic models",   in Advances in Neural Information Processing   Systems, pp. 147{154 (2006).   44. Chang, J. and Blei, D.M. Relational topic models for   document networks", in International Conference on   Arti_cial Intelligence and Statistics, pp. 81{88 (2009).   45. Bosman, J., Mourik, I.V., Rasch, M., Sieverts, E., and   Verhoe_, H. Scopus reviewed and compared: The   coverage and functionality of the citation database   Scopus, including comparisons with Web of Science   and Google Scholar", Universiteitsbibliotheek, pp. 31{   63 (2006).   46. Qin, J. Semantic similarities between a keyword   database and a controlled vocabulary database: An   investigation in the antibiotic resistance literature",   Journal of the Association for Information Science and   Technology, 51, pp. 166{180 (2000).   47. Chaudhry, S.S. and Luo, W. Application of genetic algorithms   in production and operations management: a   review", International Journal of Production Research,   43, pp. 4083{4101 (2005).   48. Gen, M. and Cheng, R., Genetic Algorithms and Engineering   Optimization, 7, John Wiley & Sons (2000).   49. Dasgupta, D. and Michalewicz, Z., Evolutionary Algorithms   in Engineering Applications, Springer Science   & Business Media (2013).   50. Zhang, Y., Porter, A.L., Hu, Z., Guo, Y., and Newman,   N.C. 'Term clumping' for technical intelligence:   A case study on dye-sensitized solar cells", Technological   Forecasting and Social Change, 85, pp. 26{39   (2014).   51. Thukral, A., Jain, A., Aggarwal, M., and Sharma, M.,   Semi-automatic Ontology Builder Based on Relation   Extraction from Textual Data, Singapore, pp. 343{350   (2018).   52. Mohapatra, P., Deng, Y., Gupta, A., Domain knowledge   driven key term extraction for IT services",   Cham, 11236, pp. 489{504 (2018).   53. Duari, S. and Bhatnagar, V. sCAKE: semantic   connectivity aware keyword extraction", Information   Sciences, 477, pp. 100{117 (2019).   54. Huh, J. Big data analysis for personalized health   activities: machine learning processing for automatic   keyword extraction approach", Symmetry, 10, p. 93   (2018).   55. Momtazi, S. and Moradiannasab, O. A statistical   approach to knowledge discovery: Bootstrap analysis   of language models for knowledge base population from   unstructured text", Scientia Iranica, 26, pp. 26{39   (2019).   56. Hall, D., Jurafsky, D., and Manning, C.D. Studying   the history of ideas using topic models", in Proceedings   of the Conference on Empirical Methods in Natural   Language Processing, pp. 363{371 (2008).   57. Hornik, K. and Grun, B. Topicmodels: An R package   for _tting topic models", Journal of Statistical Software,   40, pp. 1{30 (2011).   58. Weston, S. and Calaway, R. Getting Started with   doParallel and foreach", Date of Access, 30 (2017).   59. Klavans, R. and Boyack, K.W. Which type of citation   analysis generates the most accurate taxonomy of   scienti_c and technical knowledge?", Journal of the   Association for Information Science and Technology,   68, pp. 984{998 (2017).   60. Singhal, A. Modern information retrieval: A brief   overview", IEEE Data Eng. Bull., 24, pp. 35{43   (2001).   61. Gronsbell, J., Minnier, J., Yu, S., Liao, K., and   Cai, T. Automated feature selection of predictors in   electronic medical records data", Biometrics, 75, pp.   268{277 (2019).   62. Hong, C., Liao, K.P., and Cai, T. Semi-supervised   validation of multiple surrogate outcomes with application   to electronic medical records phenotyping",   Biometrics, 75, pp. 78{89 (2019).   63. Izadi, N., Aminian, O., and Esmaeili, B. Occupational   accidents in Iran: risk factors and long term trend   (2007{2016)", Journal of Research in Health Sciences,   19, pp. 1{6 (2019).   64. Kogi, K. Work improvement and occupational safety   and health management systems: common features   and research needs", Industrial Health, 40, pp. 121{   133 (2002).   65. Ohniwa, R.L., Hibino, A., and Takeyasu, K. Trends   in research foci in life science _elds over the last 30   years monitored by emerging topics", Scientometrics,   85, pp. 111{127 (2010).   66. Bornmann, L., Leydesdor_, L., and Wang, J. How to   improve the prediction based on citation impact percentiles   for years shortly after the publication date?",   Journal of Informetrics, 8, pp. 175{180 (2014).   67. Wang, J. Citation time window choice for research   impact evaluation", Scientometrics, 94, pp. 851{872   (2013).   68. Wei, X., Xue, H., and Zhang, J. Partnership in   supply Chain risk management research", Journal of   Applied Science and Engineering Innovation, 2, pp.   55{60 (2015).   69. Lee, J., Lapira, E., Bagheri, B., and Kao, H. Recent   advances and trends in predictive manufacturing systems   in big data environment", Manufacturing Letters,   1, pp. 38{41 (2013).   M. Rabiei et al./Scientia Iranica, Transactions E: Industrial Engineering 28 (2021) 1830{1852 1851   70. Zhang, L., Luo, Y., Tao, F., et al. Cloud manufacturing:   a new manufacturing paradigm", Enterprise   Information Systems, 8, pp. 167{187 (2014).   71. Herrmann, C., Schmidt, C., Kurle, D., Blume, S., and   Thiede, S. Sustainability in manufacturing and factories   of the future", International Journal of Precision   Engineering and Manufacturing-Green Technology, 1,   pp. 283{292 (2014).   72. Chai, J., Liu, J.N.K., and Ngai, E.W.T. Application   of decision-making techniques in supplier selection: A   systematic review of literature", Expert Systems with   Applications, 40, pp. 3872{3885 (2013).   73. Wu, F., Yeniyurt, S., Kim, D., and Cavusgil, S.T.   The impact of information technology on supply chain   capabilities and _rm performance: A resource-based   view", Industrial Marketing Management, 35, pp. 493{   504 (2006).   74. Akbari, O.Z. A survey of agent-oriented software   engineering paradigm: Towards its industrial acceptance",   International Journal of Computer Engineering   Research, 1, pp. 14{28 (2010).   75. Amezquita-Sanchez, J.P., Valtierra-Rodriguez, M.,   and Adeli, H. Wireless smart sensors for monitoring   the health condition of civil infrastructure", Scientia   Iranica, 25, pp. 2913{2925 (2018).   76. Entezami, A., Shariatmadar, H., and Karamodin,   A. An improvement on feature extraction via time   series modeling for structural health monitoring based   on unsupervised learning methods", Scientia Iranica,   27(3), pp. 1001{1018 (2020).   77. Vazirizade, S.M., Bakhshi, A., Bahar, O., and Nozhati,   S. Online nonlinear structural damage detection using   Hilbert Huang transform and arti_cial neural networks",   Scientia Iranica, 26, pp. 1266{1279 (2019).   78. Kontos, E., Blake, K.D., Chou, W.Y.S., and Prestin,   A. Predictors of eHealth usage: insights on the digital   divide from the Health Information National Trends   Survey 2012", Journal of Medical Internet Research,   16, pp. 1{16 (2014).   79. Holzinger, A., Dehmer, M., and Jurisica, I. Knowledge   discovery and interactive data mining in   Bioinformatics-state-of-the-art, future challenges and   research directions", BMC Bioinformatics, 15, p. I1   (2014).   80. Fan, W. and Bifet, A. Mining big data: current   status, and forecast to the future", ACM sIGKDD   Explorations Newsletter, 14, pp. 1{5 (2013).   81. Hashem, I., Abaker Targio, Y., Ibrar, A., Nor Badrul,   M.S., Gani, A., and Khan, S.U. The rise of big   data" on cloud computing: Review and open research   issues", Information Systems, 47, pp. 98{115 (2015).   82. Cheung, L.T.O., Fok, L., Tsang, E.P.K., Fang, W., and   Tsang, H.Y. Understanding residents' environmental   knowledge in a metropolitan city of Hong Kong,   China", Environmental Education Research, 21, pp.   507{524 (2015).   83. Cornell, S., Berkhout, F., Tuinstra, W., et al. Opening   up knowledge systems for better responses to   global environmental change", Environmental Science   & Policy, 28, pp. 60{70 (2013).   84. Bala, S. and Kumar, K. A literature review on kidney   disease prediction using data mining classi_cation   technique", International Journal of Computer Science   and Mobile Computing, 3, pp. 960{967 (2014).   85. Chaurasia, V. and Pal, S. Early prediction of heart   diseases using data mining techniques", Caribbean   Journal of Science and Technology, 1, pp. 208{217   (2013).   86. Masethe, H.D. and Masethe, M.A. Prediction of heart   disease using classi_cation algorithms", in Proceedings   of the World Congress on Engineering and Computer   Science, p. 2224 (2014).   87. Wager, K.A., Lee, F.W., and Glaser, J.P., Health Care   Information Systems: A Practical Approach for Health   Care Management, John Wiley & Sons (2017).   88. Wickens, C.D., Hollands, J.G., Banbury, S., and   Parasuraman, R., Engineering Psychology & Human   Performance, Psychology Press (2015).   89. Landy, F.J. and Conte, J.M. Work in the 21st Century,   Binder Ready Version: An Introduction to Industrial   and Organizational Psychology, John Wiley & Sons   (2016).