Forecasting ambient air pollutants by box-Jenkins stochastic models in Tehran

Document Type : Article

Authors

Department of Industrial Engineering, Sharif University of Technology, Tehran, Iran

Abstract

This paper presents a study over the behavior of six air pollutants including PM10, PM2.5, O3, SO2, NO2 and CO in Tehran during a 6-year timespan. In this paper, an iterative procedure based on the univariate Box-Jenkins stochastic models is applied to develop the most effective forecasting model for each air pollutant. Applying a number of widely used criteria, the best model for each air pollutant is selected and the results show that, the proposed models perform accurately and satisfactorily for both fitting and predicting where, the fitted and predicted values are so close to the true values of the related data. Finally, a factor analysis is conducted to investigate the relationships between the air pollutants where the results show that four factors accounts for 93.2704% of the total variance. In this regard, the factor containing PM10 and PM2.5 and the factor containing CO and NO2 are, respectively, the most and the second most affecting factors with proportion of 43.2594% and 21.6500% of total variability. While both factors originate from high number of automobiles which use fossil fuels, decreasing the number of automobiles or increasing the quality of fossil fuels may result in up to 60% improvement in air quality.

Keywords


References
1. Heger, M. and Sarraf, M. Air pollution in Tehran:
Health costs, sources, and policies", Environment
and Natural Resources Global Practice, World Bank,
Washington, DC (2018).
2. Miri, M., Derakhshan, Z., Allahabadi, A., Ahmadi,
E., Oliveri Conti, G., Ferrante, M., and Aval, H.E.
Mortality and morbidity due to exposure to outdoor
J. Delaram and M. Khedmati/Scientia Iranica, Transactions E: Industrial Engineering 28 (2021) 3551{3568 3563
air pollution in Mashhad metropolis, Iran. The AirQ
model approach", Environ. Res., 151, pp. 451{457
(2016).
3. Karimzadegan, H., Rahmatian, M., Farhud, D.D., and
Yunesian, M. Economic valuation of air pollution
health impacts in the Tehran area, Iran", Iran. J.
Public Health, 37(1), pp. 20{30 (2008).
4. Chen, C., Li, C., Li, Y., Liu, J., Meng, C., Han, J.,
Zhang, Z., and Xu, D. Short-term e ects of ambient
air pollution exposure on lung function: A longitudinal
study among healthy primary school children
in China", Sci. Total Environ., 645, pp. 1014{1020
(2018).
5. Steinle, S., Reis, S., Sabel, C.E., Semple, S., Twigg,
M.M., Braban, C.F., Leeson, S.R., Heal, M.R., Harrison,
D., Lin, C., and Wu, H. Personal exposure
monitoring of PM2:5 in indoor and outdoor microenvironments",
Sci. Total Environ., 508, pp. 383{394
(2015).
6. Iodice, P., Adamo, P., Capozzi, F., Di Palma, A., Senatore,
A., Spagnuolo, V., and Giordano, S. Air pollution
monitoring using emission inventories combined
with the moss bag approach", Sci. Total Environ., 541,
pp. 1410{1419 (2016).
7. Youse an, F., Mahvi, A.H., Yunesian, M., Hassanvand,
M.S., Kashani, H., and Amini, H. Long-term
exposure to ambient air pollution and autism spectrum
disorder in children: A case-control study in Tehran,
Iran", Sci. Total Environ., 643, pp. 1216{1222 (2018).
8. Sei , M., Niazi, S., Johnson, G., Nodehi, V., and
Yunesian, M. Exposure to ambient air pollution and
risk of childhood cancers: A population-based study in
Tehran, Iran", Sci. Total Environ., 646, pp. 105{110
(2019).
9. Brunner, C.R. National ambient air quality standards.
In: Hazardous air emissions from incineration",
pp. 27{37, Springer, Boston, MA (1985).
10. Pope III, C.A., Ezzati, M., and Dockery, D.W. Fineparticulate
air pollution and life expectancy in the
United States", New Engl J. Med., 360(4), pp. 376{
386 (2009).
11. Kukkonen, J., Pohjola, M., Sokhi, R.S., Luhana, L.,
Kitwiroon, N., Fragkou, L., Rantamaki, M., Berge, E.,
degaard, V., Slrdal, L.H., and Denby, B. Analysis
and evaluation of selected local-scale PM10 air
pollution episodes in four European cities: Helsinki,
London, Milan and Oslo", Atmos. Environ., 39(15),
pp. 2759{2773 (2005).
12. Ibarra-Berastegi, G., Elias, A., Barona, A., Saenz, J.,
Ezcurra, A., and Argando~na, J.D. From diagnosis to
prognosis for forecasting air pollution using neural networks:
Air pollution monitoring in Bilbao", Environ.
Modell. Soft., 23(5), pp. 622{637 (2008).
13. Brunelli, U., Piazza, V., Pignato, L., Sorbello, F.,
and Vitabile, S. Two-days ahead prediction of daily
maximum concentrations of SO2, O3, PM10, NO2, CO
in the urban area of Palermo, Italy", Atmos. Environ.,
41(14), pp. 2967{2995 (2007).
14. Au hammer, M. and Carson, R.T. Forecasting the
path of China's CO2 emissions using province-level
information", J. Environ. Econ. Manag., 55(3), pp.
229{247 (2008).
15. Olabemiwo, F.A., Danmaliki, G.I. Oyehan, T.A., and
Tawabini, B.S. Forecasting CO2 emissions in the
Persian Gulf States", J. Environ. Sci. Manag., 3(1),
pp. 1{10 (2017).
16. Cabaneros, S.M.S., Calautit, J.K.S., and Hughes, B.R.
Hybrid arti cial neural network models for e ective
prediction and mitigation of urban roadside NO2
pollution", Enrgy. Proced., 142, pp. 3524{3530 (2017).
17. Kurt, A., Gulbagci, B., Karaca, F., and Alagha,
O. An online air pollution forecasting system using
neural networks", Environ. Int., 34(5), pp. 592{598
(2008).
18. Niska, H., Hiltunen, T., Karppinen, A., Ruuskanen,
J., and Kolehmainen, M. Evolving the neural network
model for forecasting air pollution time series", Eng.
Appl. Artif. Intel., 17(2), pp. 159{167 (2004).
19. Elbayoumi, M., Ramli, N.A., Yusof, N.F.F.M., Yahaya,
A.S.B., Madhoun, W.A., and Ul-Sau e, A.Z.
Multivariate methods for indoor PM10 and PM2:5
modelling in naturally ventilated schools buildings",
Atmos. Environ., 94, pp. 11{21 (2014).
20. Amini, H., Taghavi-Shahri, S.M., Henderson, S.B.,
Nadda , K., Nabizadeh, R., and Yunesian, M. Land
use regression models to estimate the annual and
seasonal spatial variability of sulfur dioxide and particulate
matter in Tehran, Iran", Sci. Total Environ.,
488, pp. 343{353 (2014).
21. Lee, M., Brauer, M., Wong, P., Tang, R., Tsui,
T.H., Choi, C., Cheng, W., Lai, P.C., Tian, L.,
Thach, T.Q., Allen, R., and Barratt, B. Land use
regression modelling of air pollution in high density
high rise cities: A case study in Hong Kong", Sci. Total
Environ., 592, pp. 306{315 (2017).
22. Vlachogianni, A., Kassomenos, P., Karppinen, A.,
Karakitsios, S., and Kukkonen, J. Evaluation of
a multiple regression model for the forecasting of
the concentrations of NOx and PM10 in Athens and
Helsinki", Sci. Total Environ., 409(8), pp. 1559{1571
(2011).
23. Mu~noz, E., MartIn, M.L., Turias, I.J., Jimenez-Come,
M.J., and Trujillo, F.J. Prediction of PM10 and SO2
exceedances to control air pollution in the Bay of
Algeciras, Spain", Stoch. Env. Res. Risk A, 28(6), pp.
1409{1420 (2014).
3564 J. Delaram and M. Khedmati/Scientia Iranica, Transactions E: Industrial Engineering 28 (2021) 3551{3568
24. Allamsetty, S. and Mohapatro, S. Response surface
methodology-based model for prediction of NO
and NO2 concentrations in nonthermal plasma-treated
diesel exhaust", SN. Appl. Sci., 1(2), p. 189 (2019).
25. Lee, C.P., Lin, W.C., and Yang, C.C. A strategy for
forecasting option prices using fuzzy time series and
least square support vector regression with a bootstrap
model", Sci. Iran., 21(3), pp. 815{825 (2014).
26. Syu, Y., Kuo, J.Y., and Fanjiang, Y.Y. Time series
forecasting for dynamic quality of web services: An
empirical study", J. Sys. Soft., 134, pp. 279{303
(2017).
27. Ruby-Figueroa, R., Saavedra, J., Bahamonde, N.,
and Cassano, A. Permeate 
ux prediction in the
ultra ltration of fruit juices by ARIMA models", J.
Membrane Sci., 524, pp. 108{116 (2017).
28. Gao, Y., Shang, H.L., and Yang, Y. High-dimensional
functional time series forecasting: An application to
age-speci c mortality rates", J. Multivariate Anal.,
170, pp. 232{243 (2018).
29. Cinar, Y.G., Mirisaee, H., Goswami, P., Gaussier, E.,
and Ait-Bachir, A. Period-aware content attention
RNNs for time series forecasting with missing values",
Neurocomputing, 312, pp. 177{186 (2018).
30. Martinez, F., Frias, M.P., Perez-Godoy, M.D., and
Rivera, A.J. Dealing with seasonality by narrowing
the training set in time series forecasting with kNN",
Expert Syst. Appl., 103, pp. 38{48 (2018).
31. Huang, C.H., Yang, F.H., and Lee, C.P. The strategy
of investment in the stock market using modi ed
support vector regression model", Sci. Iran., 25(3), pp.
1629{1640 (2018).
32. Sagheer, A. and Kotb, M. Time series forecasting
of petroleum production using deep LSTM recurrent
networks", Neurocomputing, 323, pp. 203{213 (2018).
33. Suhermi, N., Suhartono, Prastyo, D.D., and Ali, B.
Roll motion prediction using a hybrid deep learning
and ARIMA model", Procedia Comput. Sci., 144, pp.
251{258 (2018).
34. Entezami, A., Shariatmadar, H., and Karamodin, A.
Improving feature extraction via time series modeling
for structural health monitoring based on unsupervised
learning methods", Sci. Iran., 27(3), pp. 1001{1018
(2020). DOI: 10.24200/SCI.2018.20641
35. Ohyver, M. and Pudjihastuti, H. Arima model for
forecasting the price of medium quality rice to anticipate
price 
uctuations", Procedia Comput. Sci., 135,
pp. 707{711 (2018).
36. Singh, A.S.N. and Mohapatra, A. Repeated wavelet
transform based ARIMA model for very short-term
wind speed forecasting", Renew. Energ., 136, pp. 758{
768 (2019).
37. Jacobson, M.Z. and Jacobson, M.Z., Fundamentals
of Atmospheric Modeling, Cambridge university press
(2005).
38. Pankratz, A., Forecasting with univariate Box-Jenkins
Models: Concepts and Cases, John Wiley & Sons
(2009).
39. Kumar, U. and Jain, V.K. ARIMA forecasting of
ambient air pollutants (O3, NO, NO2 and CO)", Stoch.
Env. Res. Risk A., 24(5), pp. 751{760 (2010).
40. Zhou, M. and Goh, T.N. Air quality modeling via
PM2.5 Measurements", Theory and Practice of Quality
and Reliability Engineering in Asia Industry, pp. 197{
210, Springer, Singapore (2017).
41. Jian, L., Zhaoa, Y., Zhu, Y.P., Zhang, M.B., and
Bertolatti, D. An application of ARIMA model to
predict submicron particle concentrations from meteorological
factors at a busy roadside in Hangzhou,
China", Sci. Total Environ., 426, pp. 336{345 (2012).
42. DIaz-Robles, L.A., Ortega, J.C., Fu, J.S., Reed, G.D.,
Chow, J.C., Watson, J.G., and Moncada-Herrera,
J.A. A hybrid ARIMA and arti cial neural networks
model to forecast particulate matter in urban areas:
The case of Temuco, Chile", Atmos. Environ., 42(35),
pp. 8331{8340 (2008).
43. Samia, A., Kaouther, N., and Abdelwahed, T. A
hybrid ARIMA and arti cial neural networks model
to forecast air quality in urban areas: case of Tunisia",
Adv. Mat. Res., 518, pp. 2960{2979 (2012).
44. Hoi, K.I., Yuen, K.V., and Mok, K.M. Prediction
of daily averaged PM10 concentrations by statistical
time-varying model", Atmos. Environ., 43(16), pp.
2579{2581 (2009).
45. Genc, D.D., Yesilyurt, C., and Tuncel, G. Air pollution
forecasting in Ankara, Turkey using air pollution
index and its relation to assimilative capacity of the
atmosphere", Environ. Monit. Assess., 166(1), pp. 11{
27 (2010).
46. Poggi, J.M. and Portier, B. PM10 forecasting using
clusterwise regression", Atmos Environ., 45(38), pp.
7005{7014 (2011).
47. Gocheva-Ilieva, S.G., Ivanov, A.V., Voynikova, D.S.,
and Boyadzhiev, D.T. Time series analysis and forecasting
for air pollution in small urban area: an
SARIMA and factor analysis approach", Stoch. Env.
Res. Risk A., 28(4), pp. 1045{1060 (2014).
48. Cortina-Januchs, M.G., Quintanilla-Dominguez, J.,
Vega-Corona, A., and Andina, D. Development of
a model for forecasting of PM10 concentrations in
Salamanca, Mexico". Atmos. Pollut. Res., 6(4), pp.
626{634 (2015).
49. Jiang, P., Dong, Q., and Li, P. A novel hybrid strategy
for PM2:5 concentration analysis and prediction", J.
Environ. Manage., 196, pp. 443{457 (2017).
J. Delaram and M. Khedmati/Scientia Iranica, Transactions E: Industrial Engineering 28 (2021) 3551{3568 3565
50. Abdolkarimzadeh, L., Azadpour, M., and Zarandi,
M.H.F. Two hybrid expert system for diagnosis Air
Quality Index (AQI)", North American Fuzzy Information
Processing Society Annual Conference, India,
New Delhi, pp. 315{322 (2018).
51. https://www.worldbank.org/en/news/infographic/
2016/09/08/death-in-the-air-air-pollution-costs
-money-and-lives.
52. Shahbazi, H., Reyhanian, M., Hosseini, V., and Afshin,
H. The relative contributions of mobile sources to
air pollutant emissions in Tehran, Iran: an emission
inventory approach", Em. Cont. Sci. Tech., 2(1), pp.
44{56 (2016).
53. Shahbazi, H., Ganjiazad, R., Hosseini, V., and
Hamedi, M. Investigating the in
uence of trac
emission reduction plans on Tehran air quality using
WRF/CAMx modeling tools", Transport. Res. D-TR
E, 57, pp. 484{495 (2017).
54. Hosseini, V. and Shahbazi, H. Urban air pollution in
Iran", Iran Stud-UK., 49(6), pp. 1029{1046 (2016).
55. Box, G.E.P., Jenkins, G.M., Reinsel, G.C., and Ljung,
G.M., Time Series Analysis: Forecasting and Control,
John Wiley & Sons (2015).
56. Wold, H. A study in the analysis of stationary time
series", Doctoral Dissertation, Almqvist & Wiksell
(1938).
57. Yeo, I.K. and Johnson, R.A. A new family of power
transformations to improve normality or symmetry",
Biometrika, 87(4), pp. 954{959 (2000).
58. Box, G.E.P. and Cox, D.R. An Analysis of Transformations",
J. R. Stat. Soc. B., 26(2), pp. 211{252
(1964).
59. Box, G.E.P., Hunter, J.S., and Hunter, W.G., Statistics
for Experimenters: Design, Innovation, and Discovery,
Wiley-Interscience, New York (2005).
60. Bozdogan, H. Model selection and Akaike's information
criterion (AIC): The general theory and its
analytical extensions", Psychometrika, 52(3), pp. 345{
370 (1987).
61. Sin, C.Y. and White, H. Information criteria for
selecting possibly misspeci ed parametric models", J.
Econometrics, 71(1), pp. 207{225 (1996).
62. Kullback, S. and Leibler, R.A. On information and
suciency", Ann. Math. Stat., 22(1), pp. 79{86
(1951).
63. Schwarz, G. Estimating the dimension of a model",
Ann. Stat., 6(2), pp. 461{464 (1978).
64. Hurvich, C.M. and Tsai, C.L. Regression and time
series model selection in small samples", Biometrika,
76(2), pp. 297{307 (1989).
65. Hannan, E.J. and Quinn, B.G. The determination of
the order of an autoregression", J. R. Stat. Soc. B.,
41(2), pp. 190{195 (1979).
66. Brockwell, P.J. and Davis, R.A., Introduction to Time
Series and Forecasting, Springer (2016).
67. Shumway, R.H. and Sto er, D.S. Time series analysis
and its applications", Stud. Inform. Control, 9(4), pp.
375{376 (2000).
68. Mulaik, S.A. Foundations of factor analysis", Chapman
and Hall/CRC (2009).
69. Bartlett, M.S. Tests of signi cance in factor analysis",
Brit. J. Statist. Psych., 3(2), pp. 77{85 (1950).
70. Jolli e, I. Principal component analysis", International
Encyclopedia of Statistical Science, pp. 1094{
1096, Springer (2011).
71. Kumar, R. and Joseph, A.E. Air pollution concentrations
of PM2:5, PM10 and NO2 at ambient and
kerbsite and their correlation in metro city - Mumbai",
Environ. Monit. Assess., 119(1), pp. 191{199 (2006).
72. Asadollahfardi, G., Zamanian, M., Mirmohammadi,
M., and Asadi, M. Air pollution study using factor
analysis and univariate Box-Jenkins modeling for the
northwest of Tehran", Adv. Environ. Res., 4(4), pp.
233{246 (2015).