Hemodynamic analysis of coronary artery bypass grafting with elastic walls and different stenoses

Document Type : Article

Authors

1 Foulad Institute of Technology, Fouladshahr, Isfahan, P.O. Box 8491663763, Iran

2 Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, P.O. Box 8415683111, Iran

Abstract

In this study the hemodynamic analysis of complete coronary bypass graft with elastic walls and different percentages of stenosis are investigated numerically. Blood flow is considered Newtonian and unsteady. The objective of this study is to deal with the influence of the wall elasticity, flow pulsatility and stenosis percentage on the flow configuration, Wall Shear Stress (WSS) and rotational flows. By comparing the rigid and elastic wall results of WSS, it is concluded that WSS obtains lower values in toe, heel and bed of the host vessel under the bifurcation in the elastic mode, which is closer to reality. Also it is concluded that with increasing the stenosis percentage, the possibility of occurring rotational flow will increase. The maximum and minimum values of WSS are observed in the stenosis of 70%. From the pulsatility of flow, it is observed that unsteady flow shows more accurate results also velocity and WSS have lower values compared with the steady state results.

Keywords


References
1.            Kaplan, H. et al. “Coronary atherosclerosis in indigenous South American Tsimane: a cross-sectional cohort study”. The Lancet 389, 1730-1739 (2017).
2.            Weydahl, E.S. & Moore Jr, J.E. “Dynamic curvature strongly affects wall shear rates in a coronary artery bifurcation model”. Journal of biomechanics 34, 1189-1196 (2001).
3.            Ku, D.N. “Blood flow in arteries”. Annual review of fluid mechanics 29, 399-434 (1997).
4.            Kraiss, L.W., Kirkman, T.R., Kohler, T.R., Zierler, B. & Clowes, A.W. “Shear stress regulates smooth muscle proliferation and neointimal thickening in porous polytetrafluoroethylene grafts”. Arteriosclerosis and thrombosis: a journal of vascular biology 11, 1844-1852 (1991).
5.            Ku, D.N., Giddens, D.P., Zarins, C.K. & Glagov, S. “Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress”. Arteriosclerosis: An Official Journal of the American Heart Association, Inc. 5, 293-302 (1985).
6.            Jin, C. & Liu, Y. “Influence of competitive flow caused by different stenosis on coronary artery bypass hemodynamics and PIV study”. Molecular & Cellular Biomechanics 16 (2019).
7.            Duncker, D.J., Koller, A., Merkus, D. & Canty Jr, J.M. “Regulation of coronary blood flow in health and ischemic heart disease”. Progress in cardiovascular diseases 57, 409-422 (2015).
8.            Bertolotti, C., Deplano, V.r., Fuseri, J. & Dupouy, P. “Numerical and experimental models of post-operative realistic flows in stenosed coronary bypasses”. Journal of Biomechanics 34, 1049-1064 (2001).
9.            Bonert, M., Myers, J.G., Fremes, S., Williams, J. & Ethier, C.R. “A numerical study of blood flow in coronary artery bypass graft side-to-side anastomoses”. Annals of Biomedical Engineering 30, 599-611 (2002).
10.          Ethier, C.R., Steinman, D., Zhang, X., Karpik, S. & Ojha, M. “Flow waveform effects on end-to-side anastomotic flow patterns”. Journal of Biomechanics 31, 609-617 (1998).
11.          Song, M.-H., Sato, M. & Ueda, Y. “Three-dimensional simulation of coronary artery bypass grafting with the use of computational fluid dynamics”. Surgery today 30, 993-998 (2000).
12.          Zohravi, E., Shirani, E. & Sadeghi, M. “Hemodynamic analysis of pulsatile blood flow in a complete bypass graft with different anastomosis angles”. Scientia Iranica. Transaction B, Mechanical Engineering 22, 423 (2015).
13.          Fung, Y.-C. “Biomechanics: circulation”. Shock 9, 155 (1998).
14.          Cebral, J.R., Yim, P.J., Löhner, R., Soto, O. & Choyke, P.L. “Blood flow modeling in carotid arteries with computational fluid dynamics and MR imaging”. Academic radiology 9, 1286-1299 (2002).
15.          De Hart, J., Peters, G., Schreurs, P. & Baaijens, F. “A three-dimensional computational analysis of fluid–structure interaction in the aortic valve”. Journal of biomechanics 36, 103-112 (2003).
16.          Liu, G., Wu, J., Ghista, D.N., Huang, W. & Wong, K.K. “Hemodynamic characterization of transient blood flow in right coronary arteries with varying curvature and side-branch bifurcation angles”. Computers in biology and medicine 64, 117-126 (2015).
17.          Doost, S.N., Ghista, D., Su, B., Zhong, L. & Morsi, Y.S. “Heart blood flow simulation: a perspective review”. Biomedical engineering online 15, 101 (2016).
18.          He, X. & Ku, D.N. “Pulsatile flow in the human left coronary artery bifurcation: average conditions”. Journal of biomechanical engineering 118, 74-82 (1996).
19.          Rindt, C. & Steenhoven, A.v. “Unsteady flow in a rigid 3-D model of the carotid artery bifurcation”. Journal of biomechanical engineering 118, 90-96 (1996).
20.          Weston, S., Wood, N., Tabor, G., Gosman, A. & Firmin, D. “Combined MRI and CFD analysis of fully developed steady and pulsatile laminar flow through a bend”. Journal of Magnetic Resonance Imaging 8, 1158-1171 (1998).
21.          Loudon, C. & Tordesillas, A. “The use of the dimensionless Womersley number to characterize the unsteady nature of internal flow”. Journal of theoretical biology 191, 63-78 (1998).
22.          Wentzel, J.J. et al. “Coronary stent implantation changes 3-D vessel geometry and 3-D shear stress distribution”. Journal of biomechanics 33, 1287-1295 (2000).
23.          Leuprecht, A. et al. “Numerical study of hemodynamics and wall mechanics in distal end-to-side anastomoses of bypass grafts”. Journal of Biomechanics 35, 225-236 (2002).
24.          Beier, S. et al. “Impact of bifurcation angle and other anatomical characteristics on blood flow–A computational study of non-stented and stented coronary arteries”. Journal of biomechanics 49, 1570-1582 (2016).
25.          Ballarin, F. et al. “Numerical modeling of hemodynamics scenarios of patient-specific coronary artery bypass grafts”. Biomechanics and modeling in mechanobiology 16, 1373-1399 (2017).
26.          Guerciotti, B. et al. “A computational fluid–structure interaction analysis of coronary Y-grafts”. Medical engineering & physics 47, 117-127 (2017).
27.          Benra, F.-K., Dohmen, H.J., Pei, J., Schuster, S. & Wan, B. “A comparison of one-way and two-way coupling methods for numerical analysis of fluid-structure interactions”. Journal of applied mathematics 2011 (2011).
28.          Bolukbasi, A., Athari, H. & Ciloglu, D. “The Application of FSI Techniques in Modeling of Realist Pulmonary Systems”. World Academy of Science, Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering 9, 1064-1069 (2015).
29.          Jahangiri, M., Saghafian, M. & Sadeghi, M.R. “Numerical study of turbulent pulsatile blood flow through stenosed artery using fluid-solid interaction”. Computational and mathematical methods in medicine 2015 (2015).
30.          Shaik, E.  (Wichita State University, 2007).
31.          Savabi, R., Nabaei, M., Farajollahi, S. & Fatouraee, N. “Fluid structure interaction modeling of aortic arch and carotid bifurcation as the location of baroreceptors”. International Journal of Mechanical Sciences 165, 105222 (2020).
32.          Steinman, D. et al. “A numerical simulation of flow in a two-dimensional end-to-side anastomosis model”. Journal of Biomechanical Engineering 115, 112-118 (1993).
33.          Ko, T., Ting, K. & Yeh, H. “Numerical investigation on flow fields in partially stenosed artery with complete bypass graft: An in vitro study”. International communications in heat and mass transfer 34, 713-727 (2007).
34.          Giannoglou, G., Soulis, J., Farmakis, T., Farmakis, D. & Louridas, G. “Haemodynamic factors and the important role of local low static pressure in coronary wall thickening”. International journal of Cardiology 86, 27-40 (2002).
35.          Leung, W.-H., Stadius, M.L. & Alderman, E.L. “Determinants of normal coronary artery dimensions in humans”. Circulation 84, 2294-2306 (1991).