Decision tree-based parametric analysis of a CNC turning process

Document Type : Article


1 Department of Mechanical Engineering, Government Polytechnic, Murtizapur, Maharashtra, India

2 Department of Production Engineering, Jadavpur University, Kolkata, West Bengal, India


Computer numerical control (CNC) is a manufacturing concept where machine tools are automated to perform some predefined functions based on the instructions fed to them. CNC turning processes have found wide ranging applications in modern day manufacturing industries due to their capabilities to produce low cost high quality parts/components with very close dimensional tolerances. In order to exploit the fullest potential of a CNC turning process, it should always be operated while setting its different input parameters at their optimal levels. In this paper, two classification tree algorithms, i.e. classification and regression tree (CART) and Chi-squared automatic interaction detection (CHAID) are applied to study the effects of various turning parameters on the responses and identify the best machining conditions for a CNC process. It is perceived that those settings almost match with the observations of the earlier researchers. The CART algorithm outperforms CHAID with respect to higher overall classification accuracy and lower prediction risk.


1. Trent, E.M., Metal Cutting, Woburn, Massachusetts:
Butterworth-Heinemann (2010).
2. Suh, S.-H., Kang, S.K., Chung, D.-H., et al., Theory
and Design of CNC Systems, Springer (2008).
3. Park, K.S. and Kim, S.H. Arti cial intelligent approaches
to determination of CNC machining parameters
in manufacturing: A review", Arti cial Intelligence
in Engineering, 12, pp. 127{134 (1997).
4. Gupta, A., Singh, H., and Aggarwal, A. Taguchifuzzy
multi output optimization (MOO) in high speed
CNC turning of AISI P-20 tool steel", Expert Systems
with Applications, 38, pp. 6822{6828 (2011).
5. Mukherjee, S., Kamal, A., and Kumar, K. Optimization
of material removal rate during turning of SAE
1020 material in CNC lathe using Taguchi technique",
Procedia Engineering, 97, pp. 29{35 (2014).
6. Marko, H., Simon, K., Tomaz, I., et al. Turning
parameters optimization using particle swarm optimization",
Procedia Engineering, 69, pp. 670{677
7. Saini, S.K. and Pradhan, S.K. Optimization of multiobjective
response during CNC turning using Taguchifuzzy
application", Procedia Engineering, 97, pp. 141{
149 (2014).
8. Vasudevan, H., Deshpande, N.C., and Rajguru, R.R.
Grey fuzzy multiobjective optimization of process
parameters for CNC turning of GFRP/epoxy composites",
Procedia Engineering, 97, pp. 85{94 (2014).
9. Saini, S.K. and Pradhan, S.K. Optimization of machining
parameters for CNC turning of di erent materials",
Applied Mechanics and Materials, 592{594,
pp. 605{609 (2014).
10. Aghdeab, S.H., Mohammed, L.A., and Ubaid, A.M.
Optimization of CNC turning for aluminum alloy
using simulated annealing method", Jordan Journal of
Mechanical and Industrial Engineering, 9(1), pp. 39{
44 (2015).
11. Camposeco-Negrete, C. Optimization of cutting parameters
using response surface method for minimizing
energy consumption and maximizing cutting quality
in turning of AISI 6061 T6 aluminum", Journal of
Cleaner Production, 91, pp. 109{117 (2015).
12. Sarkaya, M. and Gullu, A. Multi-response optimization
of minimum quantity lubrication parameters using
Taguchi-based grey relational analysis in turning of
dicult-to-cut alloy Haynes 25", Journal of Cleaner
Production, 91, pp. 347{357 (2015).
13. Asilturk, _I., Neseli, S., and _Ince, M.A. Optimisation of
parameters a ecting surface roughness of Co28Cr6Mo
medical material during CNC lathe machining by using
the Taguchi and RSM methods", Measurement, 78,
pp. 120{128 (2016).
14. Kumar, U., Singh, A., and Kumar, R. Optimization
of machining parameters for tool wear rate and material
removal rate in CNC turning by grey relational
analysis", International Journal of Applied Engineering
Research, 11(4), pp. 2771{2775 (2016).
15. Maheswara Rao, C. and Venkatasubbaiah, K. Optimization
of surface roughness in CNC turning using
Taguchi method and ANOVA", International Journal
of Advanced Science and Technology, 93, pp. 1{14
16. Klancnik, S., Hrelja, M., Balic, J., et al. Multiobjective
optimization of the turning process using
a gravitational search algorithm (GSA) and NSGAII
approach", Advances in Production Engineering &
Management, 11, pp. 366{376 (2016).
17. Bilga, P.S., Singh, S., and Kumar, R. Optimization
of energy consumption response parameters for turning
operation using Taguchi method", Journal of Cleaner
Production, 137, pp. 1406{1417 (2016).
18. Kushwaha, A. and Singh, R. Optimization of CNC
process parameters on Inconel 625 using response
surface methodology", International Journal of Mechanical
Engineering and Technology, 8(7), pp. 1830{
1836 (2017).
19. Nataraj, M. and Balasubramanian, K. Parametric
optimization of CNC turning process for hybrid metal
matrix composite", International Journal Advanced
Manufacturing Technology, 93, pp. 215{224 (2017).
20. Nayak, N.K. and Sodhi, H.S. Optimization of CNC
turning parameters for Al-6061 using response surface
methodology", International Journal of Mechanical
and Production Engineering Research and Development,
7(4), pp. 127{138 (2017).
21. Sahoo, P., Pratap, A., and Bandyopadhyay, A. Modeling
and optimization of surface roughness and tool
vibration in CNC turning of Aluminum alloy using
hybrid RSM-WPCA methodology", International
S.S. Dandge and S. Chakraborty/Scientia Iranica, Transactions E: Industrial Engineering 28 (2021) 3653{3674 3673
Journal of Industrial Engineering Computations, 8,
pp. 385{398 (2017).
22. Mandal, N.K., Mondal, M., and Singh, N.K. Modelling
and optimisation of a sustainable manufacturing
process with CNC turning centre", International Journal
of Applied Environmental Sciences, 12, pp. 1101{
1116 (2017).
23. Suresh, M., Meby Selvaraj, R., Rajkumar, K., et al.
Optimisation of cutting parameters in CNC turning
of EN-19 using tungsten carbide", International Journal
of Computer Aided Engineering and Technology,
9(2), pp. 218{228 (2017).
24. Akkus, H. Optimising the e ect of cutting parameters
on the average surface roughness in a turning process
with the Taguchi method", Materials and Technology,
52, pp. 781{785 (2018).
25. Bhanu Prakash, P., Brahma Raju, K., Venkata Subbaiah,
K., et al. Application of Taguchi based grey
method for multi aspects optimization on CNC turning
of AlSi7 Mg", Materials Today: Proceedings, 5, pp.
14292{14301 (2018).
26. Gadekula, R.K., Potta, M., Kamisetty, D., et al.
Investigation on parametric process optimization of
HCHCR in CNC turning machine using Taguchi technique",
Materials Today: Proceedings, 5, pp. 28446{
28453 (2018).
27. Palanisamy, D. and Senthil, P. Application of greyfuzzy
approach for optimization of CNC turning process",
Materials Today: Proceedings, 5, pp. 6645{6654
28. Sahoo, P., Satpathy, M.P., Singh, V.K., and Bandyopadhyay,
A. Performance evaluation in CNC turning
of AA6063-T6 alloy using WASPAS approach", World
Journal of Engineering, 15(6), pp. 700{709 (2018).
29. Saravanakumar, A., Karthikeyan, S.C., Dhamotharan,
B., et al. Optimization of CNC turning parameters
on aluminum alloy 6063 using Taguchi robust design",
Materials Today: Proceedings, 5, pp. 8290{8298
30. Nataraj, M., Balasubramanian, K., and Palanisamy,
D. Optimization of machining parameters for CNC
turning of Al/Al2O3 MMC using RSM approach",
Materials Today: Proceedings, 5, pp. 14265{14272
31. Vasudevan, H., Rajguru, R., Tank, K., et al. Optimization
of multi-performance characteristics in the
turning of GFRP (E) composites using principle component
analysis combined with grey relational analysis",
Materials Today: Proceedings, 5, pp. 5955{5967
32. Rao, V.D.P., Mahaboob Ali, S.R.S., Saqheed Ali,
S.M.Z.M., et al. Multi-objective optimization of cutting
parameters in CNC turning of stainless steel
304 with TiAlN nano coated tool", Materials Today:
Proceedings, 5, pp. 25789{25797 (2018).
33. Vijay Kumar, M., Kiran Kumar, B.J., and Rudresha,
N. Optimization of machining parameters in CNC
turning of stainless steel (EN19) by Taguchi's orthogonal
array experiments", Materials Today: Proceedings,
5, pp. 11395{11407 (2018).
34. Arun Vikram, K., Lakshmi, V.V.K., and Venkata
Praveen, A.M. Evaluation of process parameters using
GRA while machining low machinability material
in dry and wet conditions", Materials Today: Proceedings,
5, pp. 25477{25485 (2018).
35. Chau, N.L., Nguyen, M.-Q., Dao, T.-P., et al. An
e ective approach of adaptive neuro-fuzzy inference
system-integrated teaching learning-based optimization
for use in machining optimization of S45C CNC
turning", Optimization and Engineering, 20, pp. 811{
832 (2019).
36. Susanti, Y., Zukhronah, E., Pratiwi, H., et al.
Analysis of chi-square automatic interaction detection
(CHAID) and classi cation and regression tree (CRT)
for classi cation of corn production", IOP Conference
Series: Journal of Physics, 909, pp. 1{8 (2017).
37. Rokach, L., and Maimin, O., Data Mining with Decision
Trees: Theory and Applications, World Scienti c
Publishing Co., NJ, USA (2014).
38. Han, J., Kamber, M., and Pei, J., Data Mining
Concepts and Techniques, Elsevier Inc., USA (2012).
39. Breiman, L., Friedman, J.H., Olshen, R.A., et al.,
Classi cation and Regression Tree., Chapman and
Hall, New York (1993).
40. Kass, G.V. An exploratory technique for investigating
large quantities of categorical data", Journal of the
Royal Statistical Society: Series C (Applied Statistics),
29(2), pp. 119{127 (1980).
41. Pitombo, C.S., de Souza, A.D., and Lindner, A. Comparing
decision tree algorithms to estimate intercity
trip distribution", Transportation Research Part C:
Emerging Technologies, 77, pp. 16{32 (2017).
42. Sadoyan, H., Zakarian, A., and Mohanty, P. Data
mining algorithm for manufacturing process control",
International Journal of Advanced Manufacturing
Technology, 28, pp. 342{350 (2006).