Incorporating bus-bar switching actions into AC optimal power flow to ovoid over-current status

Document Type : Article


1 Department of Electrical and Computer Engineering, Semnan University, Semnan, P.O. Box 35195-363, Iran

2 Department of Electrical and Computer Engineering, Semnan University, Semnan, P.O. Box 35195-363, Iran.


This paper presents a new AC optimal power flow (AC OPF) model for sub-transmission networks. This model, which consists of sub-transmission and distribution bus-bar switching actions, can avoid undesirable over-current (OC) status and subsequent actions of OC relays. The proposed AC OPF optimizes the bus-bar switching actions along with optimizing sub-transmission control actions. Also, to consider the impact of OC relays’ actions in the proposed AC OPF, the cost of load shedding caused by these relay actions is included in the objective function and is minimized along with the sub-transmission operation cost. The bus-bar switching actions are modeled using binary decision variables. Therefore, the proposed AC OPF model is formulated as a Mixed Integer Non-linear Programming (MINLP) optimization problem. The effectiveness of the proposed model is illustrated on a real-world sub-transmission network of Iran’s power system.


1. Capitanescu, F. Critical review of recent advances  and further developments needed in AC optimal power  ow", Electr. Power Syst. Res., 136, pp. 57-68 (2016).  2. Abdi, H., Beigvand, S.D., and Scala, M.La. A review  of optimal power ow studies applied to smart grids  and microgrids", Renew. Sustain. Energy Rev., 71, pp.  742-766 (2017).  3. Maskar, M.B., Thorat, A.R., and Korachgaon, I. A  review on optimal power ow problem and solution  methodologies", 2017 Int. Conf. Data Manag. Anal.  Innov. ICDMAI 2017, pp. 64-70 (2017).  4. Pegado, R., ~Naupari, Z., Molina, Y., et al. Radial  distribution network recon_guration for power losses  reduction based on improved selective BPSO", Electr.  Power Syst. Res., 169, pp. 206-213 (2019).  5. Murty, V.V.V.S.N. and Sharma, A.K. Optimal coordinate  control of OLTC, DG, D-STATCOM, and  recon_guration in distribution system for voltage control  and loss minimization", Int. Trans. Electr. Energy  Syst., 29(3), pp. 1-27 (2019).  6. Gholami, K., Karimi, S., and Dehnavi, E. Optimal  uni_ed power quality conditioner placement and sizing  in distribution systems considering network recon_guration",  Int. J. Numer. Model. Electron. Networks,  Devices Fields, 32(1), pp. 1-17 (2019).  7. Home-Ortiz, J.M., Vargas, R., Macedo, L.H., et al.  Joint recon_guration of feeders and allocation of  capacitor banks in radial distribution systems considering  voltage-dependent models", Int. J. Electr. Power  Energy Syst., 107, pp. 298-310 (2019).  8. Salkuti, S.R. Congestion management using optimal  transmission switching", IEEE Syst. J., 12(4), pp.  3555-3564 (2018).  9. Xiao, R., Xiang, Y., Wang, L., et al. Power system  reliability evaluation incorporating dynamic thermal  M.A. Tavakkoli and N. Amjady/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 3646{3655 3655  rating and network topology optimization", IEEE  Trans. Power Syst., 33(6), pp. 6000-6012 (2018).  10. Jalali, M., Zare, K., and Hagh, M.T. A multistage  MINLP-based model for sub-transmission system  expansion planning considering the placement of DG  units", Int. J. Electr. Power Energy Syst., 63, pp. 8-16  (2014).  11. Rad, H.K. and Moravej, Z. Sub-transmission substation  expansion planning based on bacterial foraging  optimization algorithm", J. AI Data Min., 5(1), pp.  11-20 (2017).  12. Abedi, M.H., Hosseini, H., and Jalilvand, A. Subtransmission  substation expansion planning considering  load center uncertainties of size and location", Int.  J. Electr. Power Energy Syst., 109, pp. 413-422 (2019).  13. Dehghanian, P. and Kezunovic, M. Impact assessment  of transmission line switching on system reliability  performance", 2015 18th Int. Conf. Intell. Syst.  Appl. to Power Syst. ISAP 2015 (2015).  14. Tavakkoli, M.A. and Amjady, N. A new AC OPF tool  for sub-transmission networks considering distribution  switching actions and load-transferring capability",  Int. Trans. Electr. Energy Syst., 29(8), pp. 1-17 (2019).  15. Feng, J., Zhang, J.H., and Liu, R.X. Analysis of surge  current due to closing loop in distribution network", In  Proc. 8th Int. Conf. Adv. Power Syst. Control Oper.  Manag., Hong Kong, China, pp. 1-5 (2009).  16. Yin, Q., Ding, R., Zhao, Y., et al. The feasibility  research on distribution network closed loop based  on the load transfer model", World J. Eng. Technol.,  05(04), pp. 12-20 (2017).  17. Li, Z., Chen, L., Yang, W., et al. Using hybrid type  SFCL to limit the surge current caused by closing loop  operation in distribution system", Appl. Mech. Mater.,  556-562, pp. 1647-1651 (2014).  18. Rahmani, S. and Amjady, N. A new optimal power  ow approach for wind energy integrated power systems",  Energy, 134, pp. 349-359 (2017).  19. Sharifzadeh, H., Amjady, N., and Zareipour, H.  Multi-period stochastic security-constrained OPF  considering the uncertainty sources of wind power, load  demand and equipment unavailability", Electr. Power  Syst. Res., 146, pp. 33-42 (2017).  20. Attarha, A., Amjady, N., and Conejo, A.J. Adaptive  robust AC optimal power ow considering load and  wind power uncertainties", Int. J. Electr.  Power Energy Syst., 96, pp. 132-142 (2018).  21. Wu, X., Conejo, A.J., and Amjady, N. Robust  security constrained ACOPF via conic programming:  Identifying the worst contingencies", IEEE Trans.  Power Syst., 33(6), pp. 5884-5891 (2018).  22. GAMS (2018): Generalized Algebraic Modelling  System. [online], Available:  (n.d.).  23. Ahmadigorji, M. and Amjady, N. A multiyear DGincorporated  framework for expansion planning of  distribution networks using binary chaotic shark smell  optimization algorithm", Energy, 102, pp. 199-215  (2016).  24. Attarha, A. and Amjady, N. Solution of security  constrained optimal power ow for large-scale power  systems by convex transformation techniques and Taylor  series", IET Gener. Transm. Distrib., 10(4), pp.  889-896 (2016).  25. Wu, T., Zhang, Y.J., and Tang, X. A VSC-based  BESS model for multi-objective OPF using mixed  integer SOCP", IEEE Trans. Power Syst., 34(4), pp.  2541-2552 (2019).  26. Erseghe, T. and Tomasin, S. Power ow optimization  for smart microgrids by SDP relaxation on linear  networks", IEEE Trans. Smart Grid, 4(2), pp. 751-762  (2013).  27. Bynum, M., Castillo, A., Watson, J.P., et al. Tightening  McCormick relaxations toward global solution  of the ACOPF problem", IEEE Trans. Power Syst.,  34(1), pp. 814-817 (2019).  28. Pareek, P. and Verma, A. Linear OPF with linearization  of quadratic branch ow limits", 2018 IEEMA  Eng. In_n. Conf. ETechNxT 2018, pp. 1-6 (2018).  29. Miao, Z., Fan, L., Aghamolki, H.G., et al. Least  squares estimation based SDP cuts for SOCP relaxation  of AC OPF", IEEE Trans. Automat. Contr.,  63(1), pp. 241-248 (2018).