An approximate methodology to simulate combined conduction-radiation heat transfer for multi-layer insulator

Document Type : Article


1 Aerospace Research Institute (Ministry of Science, Research and Technology),14665-834, Tehran, Iran.; Department of Aerospace Engineering, Sharif University of Technology, Tehran, P.O. Box 11365-11155, Iran.

2 Department of Aerospace Engineering, Sharif University of Technology, Tehran, P.O. Box 11365-11155, Iran

3 Aerospace Research Institute (Ministry of Science, Research and Technology),14665-834, Tehran, Iran


A quasi-analytical methodology was developed to model combined conduction-radiation heat transfer through the thickness of a reflective multi-layer insulator. This methodology was validated by the experimental result. It could be used for earlier steps of the design process of the high-temperature multi-layer insulators. Traditionally, radiation thermal conductivity approximation is used in the earlier stages of design. Despite the accuracy of this approach in steady-state cases, it yields to some unacceptable errors when the thermal load is transient. It was shown that old methodology can not predict maximum temperature and time of occurrences in acceptable margins. The developed model originated from the radiation thermal conductivity approximation. But unlike the primitive one, the developed model seems acceptable in transient cases. This model is based on consideration of thermal emittance through the thickness of the insulator. It can predict the maximum temperature of the structure and occurrences time with an error of less than 4%.


1. He, Y.L. and Xie, T. Advances of thermal conductivity  models of nanoscale silica aerogel insulation  material", Applied Thermal Engineering, 81, pp. 28{  50 (2015).  2. Petrov, V.A. Combined radiation and conduction  heat transfer in high temperature _ber thermal insulation",  International Journal of Heat and Mass  Transfer, 40(9), pp. 2241{2247 (1997).  3. Cowart, K. and John, O. TCAT-A tool for automated  thermal protection system design", Space 2000 Conference  and Exposition (2000).  4. Bai, D. and Fan, X.J. Integrated design system for  dynamic thermal protection system sizing", Proceedings  of the Institution of Mechanical Engineers, Part  G: Journal of Aerospace Engineering, 221(5), pp. 883{  892 (2007).  5. Cleland, J. and Francesco, L. Thermal protection  system of the space shuttle", Research Triangle INST  Research Triangle NC (1989).  6. Streed, E.R., Cunningtont, G.R., and Zierman, C.A.  Performance of multilayer insulation systems for the  300_ to 800_K temperature range", Thermophysics  and Temperature Control of Spacecraft and Entry Vehicles,  Academic Press, pp. 735{771 (1966).  7. Pietrak, K. and Wi_sniewski, T.S. A review of models  for e_ective thermal conductivity of composite materials",  Journal of Power Technologies, 95(1), pp. 14{24  (2014).  8. Lacroix, C., Ramany Bala, P., and Feidt, M. Evaluation  of the e_ective thermal conductivity in metallic  porous media submitted to incident radiative ux in  transient conditions", Energy Conversion and Management,  40(15{16), pp. 1775{1781 (1999).  9. Hao, J.H., Chen, Q., and Hu, K. Porosity distribution  optimization of insulation materials by the variational  method", International Journal of Heat and Mass  Transfer, 92, pp. 1{7 (2016).  10. Yu, H.T., Liu, D., Duan, Y.Y., and Wang, X.D.  Theoretical model of radiative transfer in opaci_ed  aerogel based on realistic microstructures", International  Journal of Heat and Mass Transfer, 70, pp. 478{  485 (2014).  11. Mendes, M.A., Talukdar, P., Ray, S., et al. Detailed  and simpli_ed models for evaluation of e_ective  thermal conductivity of open-cell porous foams at  high temperatures in presence of thermal radiation",  International Journal of Heat and Mass Transfer, 68,  pp. 612{624 (2014).  12. Shuyuan, Z., Boming, Z., and Shanyi, D. E_ects of  contact resistance on heat transfer behaviors of _brous  insulation", Chinese Journal of Aeronautics, 22(5),  pp. 569{574 (2009).  13. Arambakam, R., Vahedi Tafreshi, H., and Pourdeyhimi,  B. Modeling performance of multi-component  _brous insulations against conductive and radiative  heat transfer", International Journal of Heat and Mass  Transfer, 71, pp. 341{348 (2014).  14. Wei, K., Cheng, X., Mo, F., et al. Design and  analysis of integrated thermal protection system based  on lightweight C/SiC pyramidal lattice core sandwich  panel", Materials & Design, 111, pp. 435{444 (2016).  15. Torabi, A., Abedian, A., Farsi, M.A., et al. Axiomatic  design of a reective multilayer high-temperature insulator",  Proceedings of the Institution of Mechanical  Engineers, Part G: Journal of Aerospace Engineering,  233(2), pp. 457{471 (2019).  16. Daryabeigi, K. Thermal analysis and design optimization  of multilayer insulation for reentry aerodynamic  heating", Journal of Spacecraft and Rockets, 39(4), pp.  509{514 (2002).  17. Ji, T., Zhang, R., Sunden, B., et al. Investigation  on thermal performance of high temperature multilayer  insulations for hypersonic vehicles under aerodynamic  heating condition", Applied Thermal Engineering,  70(1), pp. 957{965 (2014).  18. Daryabeigi, K. Analysis and testing of high temperature  _brous insulation for reusable launch vehicles",  37th Aerospace Sciences Meeting and Exhibit, USA,  AIAA, 99{1044 (1999).  19. Daryabeigi, K. Heat transfer in high-temperature  _brous insulation", Journal of Thermophysics and  Heat Transfer, 17(1), pp. 10{20 (2003).  20. Larkin, B.K. and Churchill, S.W. Heat transfer by  radiation through porous insulations", AIChE Journal,  5(4), pp. 467{474 (1959).  21. Howell, J.R., Menguc, M.P., and Siegel, R., Thermal  Radiation Heat Transfer, CRC press (2015).  22. Fang, W.Z., Zhang, H., Chen, L., et al. Numerical  predictions of thermal conductivities for the silica aerogel  and its composites", Applied Thermal Engineering,  115, pp. 1277{1286 (2017).  23. Curry, D.M., Space Shuttle Orbiter Thermal Protection  System Design and Flight Experience, NASA TM-  104773 (1993)  24. Lee, S.C. E_ect of _ber orientation on thermal radiation  in _brous media", International Journal of Heat  and Mass Transfer, 32(2), pp. 311{319 (1989).  25. Lee, S.C. Scattering phase function for _brous media",  International Journal of Heat and Mass Transfer,  33(10), pp. 2183{2190 (1990).  2932 A. Torabi et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 2924{2932  26. Aegerter, M.A., Leventis, N., and Matthias M.K.,  Eds., Aerogels Handbook, Springer Science & Business  Media (2011).  27. Daryabeigi, K., Miller, S.D., and Cunnington, G.R.  Heat transfer in high-temperature multilayer insulations",  Proceedings of the 5th European Workshop on  Thermal Protection Systems and Hot Structures, ESTEC,  Noordwijk, the Netherlands, May 17{19 (2006).  28. Auerkari, P., Mechanical and Physical Properties of  Engineering Alumina Ceramics, Espoo: Technical  Research Centre of Finlan (1996).