Simulations of nonlinear advection-diffusion models through various finite element techniques

Document Type : Article


Department of Mathematics, Faculty of Arts and Science, Yildiz Technical University, Istanbul 34220, Turkey


In this study, the Burgers equation is analyzed in both numerically and mathematically by considering various finite element based techniques including Galerkin, Taylor-Galerkin and collocation methods for spatial variation of the equation. The obtained time dependent ordinary differential equation system is approximately solved by α-family of time approximation. All these methods are theoretically explained using cubic B-spline basis and weight functions for a strong form of the model equation. Von Neumann matrix stability analysis is performed for each of these methods and stability criteria are determined in terms of the problem parameters. Some challenging examples of the Burgers equation are numerically solved and compared with the literature and exact solutions. Also, the proposed techniques have been compared with each other in terms of their advantageous and disadvantageous depending on the problem types. The more advantageous method of the three, comparison to other two, has been found out for the special cases of the present problem in detail.


1. Sari, M. and Gurarslan, G. A sixth-order compact  _nite di_erence scheme to the numerical solutions of  Burgers' equation", Appl Math Comput., 208, pp. 475{  483 (2009).  2. Wang, J. and Warnecke, G. Existence and uniqueness  of solutions for a non-uniformly parabolic equation", J.  Di_er. Equations, 189, pp. 1{16 (2003).  3. Miller, E.L. Predictor-corrector studies of Burger's  model of turbulent ow", MS Thesis, University of  Delaware, Newark, Delaware (1966).  4. Kutluay, S., Bahadir, A.R., and Ozdes, A. Numerical  solution of one-dimensional Burgers' equation: explicit  and exact-explicit _nite di_erence methods", J. Comput.  Appl. Math., 103, pp. 251{261 (1999).  5. Seydaoglu, M. An accurate approximation algorithm  for Burgers' equation in the presence of small viscosity",  J. Comput. Appl. Math., 344, pp. 473{481 (2018).  6. Bahadir, A.R. and Saglam, M. A mixed _nite  di_erence and boundary element approach to onedimensional  Burgers' equation", Appl. Math. Comput.,  160, pp. 663{673 (2005).  7. Sari, M., Tunc, H., and Seydaoglu M. Higher order  splitting approaches in analysis of the Burgers equation",  Kuwait J. Sci., 46(1), pp. 1{14 (2019).  8. Hopf, E. The partial di_erential equation", Commun.  Pur. Appl. Math., 9, pp. 201{230 (1950).  9. Cole, J.D. On a quasi-linear parabolic equation in  aerodynamics", Q. Appl. Math., 9, pp. 225{236 (1951).  10. Talwar, J., Mohanty, R.K., and Singh, S. A new  algorithm based on spline in tension approximation  for 1D parabolic quasi-linear equations on a variable  mesh", Int. J. Comput. Math., 93, pp. 1771{1786  (2016).  11. Jiwari, R. A hybrid numerical scheme for the numerical  solution of the Burgers' equation", Comput. Phys.  Commun., 188, pp. 50{67 (2015).  12. Seydaoglu, M., Erdogan, U., and Ozis, T. Numerical  solution of Burgers' equation with higher order  splitting methods", J. Comput. Appl. Math., 291, pp.  410{421 (2016).  13. Korkmaz, A. and Dag, I. Polynomial based di_erential  quadrature method for numerical solution of  nonlinear Burgers' equation", J. Franklin I., 248, pp.  2863{2875 (2016).  14. Bahadir, A.R. and Saglam, M. A mixed _nite  di_erence and boundary element approach to onedimensional  Burgers' equation", Appl. Math. Comput.,  160, pp. 663{673 (2005).  15. Egidi, N., Maponi, P., and Quadrini, M. An integral  equation method for the numerical solution of the  Burgers equation", Comput. Math. Appl., 76(1), pp.  35{44 (2018).  16. Inan, B. and Bahadir, A.R. An explicit exponential  _nite di_erence method for the Burgers' equation",  European International Journal of Science and Technology,  2(10), pp. 61{72 (2013).  17. Zeytinoglu, A., Sari, M., and Pasaoglu, B.A. Numerical  simulations of shock wave propagating by a hybrid  approximation based on high-order _nite di_erence  schemes", Acta Phys. Pol. A, 133, pp. 369{386 (2017).  18. Verma, A.K. and Verma, L. Higher order time integration  formula with application on Burgers' equation",  Int. J. Comput. Math., 92, pp. 756{771 (2015).  2870 H. Tunc and M. Sari/Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 2853{2870  19. Rouzegar, J. and Sharifpoor, R.A. A _nite element  formulation for bending analysis of isotropic and orthotropic  plates based on two-variable re_ned plate  theory", Sci. Iran., 22(1), pp. 196{207 (2015).  20. Ak, T., Karakoc, S.B.G., and Biswas, A. Application  of Petrov-Galerkin _nite element method to shallow  water waves model: modi_ed Korteweg-de Vries equation",  Sci. Iran., 24(3), pp. 1148{1159 (2017).  21. Zendehbudi, G. Combination of projection and  Galerkin _nite element methods to solve the problem  of free convection in enclosures with complex geometries",  Sci. Iran, 25(3), pp. 1189{1196 (2018).  22. Kutluay, S., Esen, A., and Dag, I. Numerical solutions  of the Burgers' equation by the least-squares quadratic  B-spline _nite element method", J. Comput. Appl.  Math., 167, pp. 21{33 (2004).  23. Sari, M. and Tunc, H. An optimization technique  in analyzing the Burgers equation", Sigma Journal of  Engineering and Natural Sciences, 35(3), pp. 369{386  (2017).  24. Kutluay, S. and Esen, A. A lumped Galerkin method  for solving the Burgers equation", Int. J. Comput.  Math., 81(11), pp. 1433{1444 (2004).  25. Dag, I., Saka, B., and Boz, A. B-spline Galerkin  methods for numerical solutions of Burgers' equation",  Appl. Math. Comput., 166, pp. 506{522 (2005).  26. Aksan, E.N. An application of cubic B-spline _nite  element method for the Burgers' equation", Therm.  Sci., 22(1), pp. 195{202 (2018).  27. Ak, T. An application of Galerkin method to generalized  Benjamin-Bona-Mahony-Burgers equation",  Adiyaman University Journal of Science, 8(2), pp. 53{  69 (2018).  28. Ak, T., Saha, A., and Dhawan, S. Performance of a  hybrid computational scheme on travelling waves and  its dynamic transition for Gilson Pickering equation",  Int. J. Mod. Phys. C, 30(4), pp. 1950028{1/17 (2019).  29. Mohammadi, R. Numerical approximation for viscous  Cahn-Hilliard equation via septic B-spline", Appl.  Anal. (2019). DOI: 10.1080/00036811.2019.1594200  30. Mukundan, V. and Awasthi, A. E_cient numerical  techniques for Burgers' equation", Appl. Math. Comput.,  262, pp. 282{297 (2015).  31. Aksan, E.N. Quadratic B-spline _nite element  method for numerical solution of the Burgers equation",  Appl. Math. Comput., 174, pp. 884{896 (2006).  32. Tunc, H. Various _nite element techniques for  advection-di_usion-reaction processes", MSc Thesis,  Yildiz Technical University (2017).  33. Shao, L., Feng, X., and He, Y. The local discontinuous  Galerkin _nite element method for Burgers equation",  Math. Comput. Model., 54, pp. 2943{2954 (2011).  34. Abazari, R. and Borhanifar, A. Numerical study  of the solution of the Burgers and coupled Burgers  equations by a di_erential transformation method",  Comput. Math. Appl., 59, pp. 2711{2722 (2010).