1. Sari, M. and Gurarslan, G. A sixth-order compact _nite di_erence scheme to the numerical solutions of Burgers' equation", Appl Math Comput., 208, pp. 475{ 483 (2009). 2. Wang, J. and Warnecke, G. Existence and uniqueness of solutions for a non-uniformly parabolic equation", J. Di_er. Equations, 189, pp. 1{16 (2003). 3. Miller, E.L. Predictor-corrector studies of Burger's model of turbulent ow", MS Thesis, University of Delaware, Newark, Delaware (1966). 4. Kutluay, S., Bahadir, A.R., and Ozdes, A. Numerical solution of one-dimensional Burgers' equation: explicit and exact-explicit _nite di_erence methods", J. Comput. Appl. Math., 103, pp. 251{261 (1999). 5. Seydaoglu, M. An accurate approximation algorithm for Burgers' equation in the presence of small viscosity", J. Comput. Appl. Math., 344, pp. 473{481 (2018). 6. Bahadir, A.R. and Saglam, M. A mixed _nite di_erence and boundary element approach to onedimensional Burgers' equation", Appl. Math. Comput., 160, pp. 663{673 (2005). 7. Sari, M., Tunc, H., and Seydaoglu M. Higher order splitting approaches in analysis of the Burgers equation", Kuwait J. Sci., 46(1), pp. 1{14 (2019). 8. Hopf, E. The partial di_erential equation", Commun. Pur. Appl. Math., 9, pp. 201{230 (1950). 9. Cole, J.D. On a quasi-linear parabolic equation in aerodynamics", Q. Appl. Math., 9, pp. 225{236 (1951). 10. Talwar, J., Mohanty, R.K., and Singh, S. A new algorithm based on spline in tension approximation for 1D parabolic quasi-linear equations on a variable mesh", Int. J. Comput. Math., 93, pp. 1771{1786 (2016). 11. Jiwari, R. A hybrid numerical scheme for the numerical solution of the Burgers' equation", Comput. Phys. Commun., 188, pp. 50{67 (2015). 12. Seydaoglu, M., Erdogan, U., and Ozis, T. Numerical solution of Burgers' equation with higher order splitting methods", J. Comput. Appl. Math., 291, pp. 410{421 (2016). 13. Korkmaz, A. and Dag, I. Polynomial based di_erential quadrature method for numerical solution of nonlinear Burgers' equation", J. Franklin I., 248, pp. 2863{2875 (2016). 14. Bahadir, A.R. and Saglam, M. A mixed _nite di_erence and boundary element approach to onedimensional Burgers' equation", Appl. Math. Comput., 160, pp. 663{673 (2005). 15. Egidi, N., Maponi, P., and Quadrini, M. An integral equation method for the numerical solution of the Burgers equation", Comput. Math. Appl., 76(1), pp. 35{44 (2018). 16. Inan, B. and Bahadir, A.R. An explicit exponential _nite di_erence method for the Burgers' equation", European International Journal of Science and Technology, 2(10), pp. 61{72 (2013). 17. Zeytinoglu, A., Sari, M., and Pasaoglu, B.A. Numerical simulations of shock wave propagating by a hybrid approximation based on high-order _nite di_erence schemes", Acta Phys. Pol. A, 133, pp. 369{386 (2017). 18. Verma, A.K. and Verma, L. Higher order time integration formula with application on Burgers' equation", Int. J. Comput. Math., 92, pp. 756{771 (2015). 2870 H. Tunc and M. Sari/Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 2853{2870 19. Rouzegar, J. and Sharifpoor, R.A. A _nite element formulation for bending analysis of isotropic and orthotropic plates based on two-variable re_ned plate theory", Sci. Iran., 22(1), pp. 196{207 (2015). 20. Ak, T., Karakoc, S.B.G., and Biswas, A. Application of Petrov-Galerkin _nite element method to shallow water waves model: modi_ed Korteweg-de Vries equation", Sci. Iran., 24(3), pp. 1148{1159 (2017). 21. Zendehbudi, G. Combination of projection and Galerkin _nite element methods to solve the problem of free convection in enclosures with complex geometries", Sci. Iran, 25(3), pp. 1189{1196 (2018). 22. Kutluay, S., Esen, A., and Dag, I. Numerical solutions of the Burgers' equation by the least-squares quadratic B-spline _nite element method", J. Comput. Appl. Math., 167, pp. 21{33 (2004). 23. Sari, M. and Tunc, H. An optimization technique in analyzing the Burgers equation", Sigma Journal of Engineering and Natural Sciences, 35(3), pp. 369{386 (2017). 24. Kutluay, S. and Esen, A. A lumped Galerkin method for solving the Burgers equation", Int. J. Comput. Math., 81(11), pp. 1433{1444 (2004). 25. Dag, I., Saka, B., and Boz, A. B-spline Galerkin methods for numerical solutions of Burgers' equation", Appl. Math. Comput., 166, pp. 506{522 (2005). 26. Aksan, E.N. An application of cubic B-spline _nite element method for the Burgers' equation", Therm. Sci., 22(1), pp. 195{202 (2018). 27. Ak, T. An application of Galerkin method to generalized Benjamin-Bona-Mahony-Burgers equation", Adiyaman University Journal of Science, 8(2), pp. 53{ 69 (2018). 28. Ak, T., Saha, A., and Dhawan, S. Performance of a hybrid computational scheme on travelling waves and its dynamic transition for Gilson Pickering equation", Int. J. Mod. Phys. C, 30(4), pp. 1950028{1/17 (2019). 29. Mohammadi, R. Numerical approximation for viscous Cahn-Hilliard equation via septic B-spline", Appl. Anal. (2019). DOI: 10.1080/00036811.2019.1594200 30. Mukundan, V. and Awasthi, A. E_cient numerical techniques for Burgers' equation", Appl. Math. Comput., 262, pp. 282{297 (2015). 31. Aksan, E.N. Quadratic B-spline _nite element method for numerical solution of the Burgers equation", Appl. Math. Comput., 174, pp. 884{896 (2006). 32. Tunc, H. Various _nite element techniques for advection-di_usion-reaction processes", MSc Thesis, Yildiz Technical University (2017). 33. Shao, L., Feng, X., and He, Y. The local discontinuous Galerkin _nite element method for Burgers equation", Math. Comput. Model., 54, pp. 2943{2954 (2011). 34. Abazari, R. and Borhanifar, A. Numerical study of the solution of the Burgers and coupled Burgers equations by a di_erential transformation method", Comput. Math. Appl., 59, pp. 2711{2722 (2010).