A response-based approach to online prediction of generating unit angular stability

Document Type : Article


Centre of Excellence for Power System Automation and Operation, Iran University of Science and Technology, Tehran, Iran.


In this paper, first, a rotor angle trajectory model based on polynomial functions is proposed. Afterwards, a response-based approach for online prediction of power system angular instability is presented. The proposed method utilizes bus phase angle data measured by phasor measurement unit at the point of common coupling of power plant transformer to the bulk power grid. In the prediction process, by computing the second order derivative of post-fault data, the starting point of the calculation data window is determined. Next, a fifth-degree polynomial curve is fitted on the designated data window to predict the angular curve of generating unit. Based on the sign of the first order derivative of predicted curve, the angular stability of generating unit is judged. This approach is testified on the western system coordinating council standard test bed under different operation and fault type scenarios. Taking into account various fault conditions and their associated occurrence probability, a probabilistic index is also defined to sum up the overall performance of the new method. Simulation results confirm that the proposed method outperforms the existing ones in terms of both accuracy and speed. Prediction results could be used in generator rejection schemes to prevent severe power plant outages.


1. Khandani, A. and Akbari Foroud, A. Providing transient  stability by excitation system response improvement  methods through long-term contracts", Scientia  Iranica, 26(3), pp. 1652-1663 (2019).  2. Aminifar, F., Fotuhi-Firuzabad, M., Safdarian, A., et  al. Synchrophasor measurement technology in power  systems: panorama and state-of-the-art", IEEE Access,  2, pp. 1607-1628 (2014).  3. Kundur, P., Power System Stability & Control, Tata  McGraw-Hill, Ed., 5th Reprint, New Delhi (2008).  4. Chih-Wen, L., Mu-chun, S., Shuenn-Shing, T., et al.  Application of a novel fuzzy neural network to realtime  transient stability swings prediction based on synchronized  phasor measurements", IEEE Transactions  on Power Systems, 14, pp. 685-692 (1999).  5. Xiaochen, W., Jinquan, Z., Aidong, X., et al. Review  on transient stability prediction methods based on real  time wide-area phasor measurements", 4th Int. Conf.  on Electric Utility Deregulation and Restructuring and  Power Technologies., pp. 320-326 (2011).  6. Karady, G.G. and Jun, G. A hybrid method for  generator tripping", IEEE Transactions on Power  Systems, 17, pp. 1102-1107 (2002).  7. Hazra, J., Reddi, R.K., Das, K., et al. Power grid  transient stability prediction using wide area synchrophasor  measurements", 3rd IEEE PES Innovative  Smart Grid Technologies Europe (ISGT Europe), pp.  1-8 (2012).  8. Esmaili, M., Hajnoroozi, A.A., and Shayanfar, H.A.  Risk evaluation of online special protection systems",  International Journal of Electrical Power & Energy  Systems, 41, pp. 137-144 (2012).  9. Kun, M., Xu, P., Zhao, J., et al. Comparison of  methods for the perturbed trajectory prediction based  on wide area measurements", IEEE Power Engineering  and Automation Conference (PEAM), pp. 321-325  (2011).  10. Liu, C.W. and Thorp, J. Application of synchronised  phasor measurements to real-time transient stability  prediction", IEE Proceedings - Generation, Transmission  and Distribution, 142, pp. 355-360 (1995).  3604 A.A. Hajnorouzi and H.A. Shayanfar/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 3592{3605  11. Hashiesh, F., Mostafa, H.E., Khatib, A.R., et al.  An Intelligent wide area synchrophasor based system  for predicting and mitigating transient instabilities",  IEEE Transactions on Smart Grid, 3, pp. 645-652  (2012).  12. Siddiqui, S.A., Verma, K., Niazi, K.R., et al. Realtime  monitoring of post-fault scenario for determining  generator coherency and transient stability through  ANN", IEEE Transactions on Industry Applications,  54(1), pp. 685-692 (2018).  13. Zhou, Y., Wu, J., Hao, L., et al. Transient stability  prediction of power systems using post-disturbance  rotor angle trajectory cluster features", Electric Power  Components and Systems, 44(17), pp. 1879-1891  (2016).  14. Tingyan, G. and Milanovi, J.V. The e_ect of quality  and availability of measurement signals on accuracy of  on-line prediction of transient stability using decision  tree method", IEEE PES ISGT Europe, pp. 1-5 (2013).  15. Guo, T. and Milanovi, J.V. On-line prediction of transient  stability using decision tree method; sensitivity  of accuracy of prediction to di_erent uncertainties",  IEEE Conf. PowerTech. Grenoble, pp. 1-6 (2013).  16. Sun, K., Lee, S.T., and Zhang, P. An adaptive power  system equivalent for real-time estimation of stability  margin using -plane trajectories", IEEE Transactions  on Power Systems, 26, pp. 915-923 (2011).  17. Bretas, N.G. and Phadke, A.G. Real time instability  prediction through adaptive time series coe_cients",  IEEE Power Engineering Society, Winter Meeting, pp.  731-736 (1999).  18. Alinezhad, B. and Karegar, H.K. Predictive out-ofstep  relay based on equal area criterion and PMU  data", Int Trans Electr Energ Syst, 27:e2327 (2017).  19. Zare, H., Alinejad, B.Y., and Yaghobi, H. Intelligent  prediction of out-of-step condition on synchronous  generators because of transient instability crisis", Int  Trans Electr Energ Syst., 29:e2686 (2019).  20. Sobbouhi, A.R. and Aghamohammadi, M.R. A  new algorithm for predicting out-of-step using rotor  speed-acceleration based on phasor measurement units  (PMU) Data", Electric Power Components and Systems,  43, pp. 1478-1486 (2015).  21. Diaz-Alzate, A.F., Candelo-Becerra, J., and Villa  Sierra, J. Transient stability prediction for realtime  operation by monitoring the relative angle with  prede_ned thresholds", Energies MDPI, Open Access  Journal, EE 423, 12(5), pp. 1-17 (March 2019).  22. Bhui, P. and Senroy, N. Real-time prediction and  control of transient stability using transient energy  function", IEEE Transactions on Power Systems,  32(2), pp. 923-934 (2017).  23. Zima, M. Special protection schemes in electric power  systems", EEH-Power Systems Laboratory, pp. 1-22  (2002).  24. Guo, H., Liu, C.C., and Wang, G. Lyapunov exponents  over variable window sizes for prediction of rotor  angle stability", North American Power Symposium,  pp. 1-6 (2014).  25. Weihui, F., Sanyi, Z., McCalley, J.D., et al. Risk assessment  for special protection system", IEEE Transactions  on Power Systems, 17, pp. 63-72 (2002).  26. Rahimi Pordanjani, I., Askarian Abyaneh, H., Sadeghi,  S.H.H., et al. Risk reduction in special protection  systems by using an online method for transient instability  prediction", International Journal of Electrical  Power & Energy Systems, 32, pp. 156-162 (2010).  27. Weckesser, T., J_ohannsson, H., and _stergaard, J.  Impact of model detail of synchronous machines on  real-time transient stability assessment", IREP Symposium  Bulk Power System Dynamics and Control -  IX Optimization, Security and Control of the Emerging  Power Grid, Rethymno, pp. 1-9 (2013).  28. Teimourzadeh, S., Davarpanah, M., Aminifar, F., et  al. An adaptive auto-reclosing scheme to preserve  transient stability of microgrids", IEEE Transactions  on Smart Grid, 9(4), pp. 2638-2646 (2016).  29. Hajnoroozi, A.A., Aminifar, F., and Ayoubzadeh,  H. Generating unit model validation and calibration  through synchrophasor measurements", IEEE Transactions  on Smart Grid, 6, pp. 441-449 (2015).  30. Gopakumar, P., Reddy, M.J.B., and Mohanta, D.K.  Transmission line fault detection and localisation  methodology using PMU measurements", IET Generation,  Transmission & Distribution, 9, pp. 1033-1042  (2015).  31. IEEE standard for synchrophasor measurements for  power systems. IEEE Std C37.118.1-2011 (Revision of  IEEE Std C37.118-2005), pp. 1-61 (2011).  32. DIgSILENT PowerFactory, available at:/http://www.  digsilent.de/.  33. Lucas, J.R. Power system analysis: faults", EE 423  (2005).