A 3D polyoxoniobate-based framework showing performance in dye removal from aqueous solution

Document Type : Article


1 School of Chemistry, College of Science, University of Tehran, Tehran, P.O. Box 14155-6455, Iran.

2 School of Chemical Engineering, University of Tehran, Tehran, P.O. Box 1417466191, Iran


A polyoxoniobate-based 3D framework [K8H30Nb6O31] (1), was prepared through hydrothermal method and characterized by single crystal X-ray diffraction, powder X-ray diffraction (PXRD), solid state UV-visible and thermogravimetric analysis (TGA). Structure and properties of 1 were investigated with various computational methods. QTAIM and NBO studies together with thermogravimetric analysis suggest strong interactions between potassium ion, Lindqvist hexaniobate and water molecules. Hirshfeld surfaces around the Nb6O198- reveal that the Lindqvist ion acts as a ɳ3 ligand for the alkali cations. One remarkable detail about the structure is the presence of an encaged potassium ion, surrounded by six water molecules and four potassium ions. The prepared polyoxoniobate (PONb) was tested in the removal of diazo dye pollutant in water. The result shows that 1 has good activity and stability during the dye removal process and can be recovered and reused at least for five cycles.


1.Ahuja, S. and Hristovski, K., Novel Solutions to Water Pollution, ACS Publications (2013).
2. Bunzel, K., Kattwinkel, M., and Liess, M. Effects of organic pollutants from wastewater treatment plants on aquatic invertebrate communities", Water Research, 47, pp. 597-606 (2013).
3. Malaj, E., Peter, C., and Grote, R. Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale", PNAS, 111, pp. 9549-9554 (2014). 4. Copaciu, F., Opri_s, O., and Coman, V. Di_use water pollution by anthraquinone and azo dyes in environment importantly alters foliage volatiles, carotenoids and physiology in wheat (Triticum aestivum)", Water, Air, Soil Pollut, 224, p. 1478 (2013). 5. Bafana, A., Devi, S., and Chakrabarti, T. Azo dyes: past, present and the future", Environ. Rev, 19, pp. 350-371 (2011). 6. Spellman, F.R., The Drinking Water Handbook, CRC Press (2017). 7. Hassaan, M.A. and El Nemr, A. Health and environmental impacts of dyes: mini review", Am. J. of Environ. Sci. Eng., 1, pp. 64-67 (2017). 8. Chen, S., Zhang, J., and Zhang, C. Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from Phragmites australis", Desalination, 252, pp. 149-156 (2010). 9. Ding, J., Yang, Z., He, C., et al. UiO-66 (Zr) coupled with Bi2MoO6 as photocatalyst for visiblelight promoted dye degradation", J. Colloid Interface Sci., 497, pp. 126-133 (2017). 10. Zhao, H., Xia, Q., Xing, H., et al. Construction of pillared-layer MOF as e_cient visible-light photocatalysts for aqueous Cr (VI) reduction and dye degradation", ACS Sustain Chem Eng, 5, pp. 4449- 4456 (2017). 11. Crini, G. Non-conventional low-cost adsorbents for dye removal: a review", Bioresour. Technol., 97, pp. 1061-1085 (2006). 12. Mittal, A., Malviya, A., and Kaur, D., et al. Studies on the adsorption kinetics and isotherms for the removal and recovery of methyl orange from wastewaters using waste materials", J. Hazard. Mater., 148, pp. 229-240 (2007). 13. Mahmoodi, N., Abdi, M., Oveisi, J., et al. Metalorganic framework (MIL-100 (Fe)): Synthesis, detailed photocatalytic dye degradation ability in colored textile wastewater and recycling", Mater. Res. Bull, 100, pp. 357-366 (2018). B. Safarkoopayeh et al./Scientia Iranica, Transactions C: Chemistry and ... 26 (2019) 3387{3399 3397 14. Baldrian, P., Merhautov_a, V., Gabriel, J., et al. Decolorization of synthetic dyes by hydrogen peroxide with heterogeneous catalysis by mixed iron oxides", Appl. Catal., B., 66, pp. 258-264 (2006). 15. Bilal, M., Iqbal, H.M., Hu, H., et al. Enhanced biocatalytic performance and dye degradation potential of chitosan-encapsulated horseradish peroxidase in a packed bed reactor system", Sci. Total Environ., 575, pp. 1352-1360 (2017). 16. Karcher, S., Kornmuller, A., and Jekel, M. Anion exchange resins for removal of reactive dyes from textile wastewaters", Water Research, 36, pp. 4717- 4724 (2002). 17. Gemeay, A.H., Mansour, I.A., El-Sharkawy, R.G., et al. Kinetics and mechanism of the heterogeneous catalyzed oxidative degradation of indigo carmine", J. Mol. Catal. A: Chem., 193, pp. 109-120 (2003). 18. Atchudan, R., Edison, T., Perumal, S.I., et al. Effective photocatalytic degradation of anthropogenic dyes using graphene oxide grafting titanium dioxide nanoparticles under UV-light irradiation", J. Photochem. Photobiol., A., 333, pp. 92-104 (2017). 19. Salama, A., Mohamed, A., Aboamera, N.M., et al. Photocatalytic degradation of organic dyes using composite nano_bers under UV irradiation", App. Nan. Sci., 8, pp. 155-161 (2018). 20. Roof, I.P., Park, S., Vogt, T., et al. Crystal growth of two new niobates, La2KNbO6 and Nd2KNbO6: structural, dielectric, photophysical, and photocatalytic properties", Chem. Mater., 20, pp. 3327-3335 (2008). 21. Li, G., Kako, T., Wang, D., et al. Composition dependence of the photophysical and photocatalytic properties of (AgNbO3)1􀀀x (NaNbO3)x solid solutions", J. Solid State Chem., 180, pp. 2845-2850 (2007). 22. Xing, J., Tan, Z., Yuan, J., et al. Structure and electrical properties of (0:965 􀀀 x)(K 0.48 Na 0.52) NbO3 􀀀 x BiGaO3 􀀀 0:035 (Bi 0.5 Na 0.5) ZrO3 piezoelectric ceramics", RSC Advances, 6, pp. 57210- 57216 (2016). 23. Katsumata, K., Cordonier, C.E., Shichi, T., et al. Photocatalytic activity of NaNbO3 thin _lms", JACS., 131, pp. 3856-3857 (2009). 24. Oliveira, L., Gon_salves, M., Guerreiro, M., et al. A new catalyst material based on niobia/iron oxide composite on the oxidation of organic contaminants in water via heterogeneous Fenton mechanisms", Appl. Catal., A., 316, pp. 117-124 (2007). 25. Wang, C., Zhang, M., Stern, B., et al. Nanophotonic lithium niobate electro-optic modulators", Optics Express, 26, pp. 1547-1555 (2018). 26. Feliczak, A., Walczak, K., Wawrzy_nczak, A., et al. The use of mesoporous molecular sieves containing niobium for the synthesis of vegetable oil-based products", Catal. Today., 140, pp. 23-29 (2009). 27. Dong, J., Hu, J., Chi, Y., et al. A polyoxoniobatepolyoxovanadate double-anion catalyst for simultaneous oxidative and hydrolytic decontamination of chemical warfare agent simulants", Angew. Chem. Int. Ed., 56, pp. 4473-4477 (2017). 28. Liu, Y., Guo, S., Ding, L., et al. Lindqvist polyoxoniobate ion-assisted electrodeposition of cobalt and nickel water oxidation catalysts", ACS Appl. Mater. Interfaces., 7, pp. 16632-16644 (2015). 29. Li, L., Niu, Y., Dong, K., et al. A Ni-containing decaniobate incorporating organic ligands: synthesis, structure, and catalysis for allylic alcohol epoxidation", RSC Advances, 7, pp. 28696-28701 (2017). 30. Kinnan, M.K., Creasy, W.R., Fullmer, L., et al. Nerve agent degradation with polyoxoniobates", Eur. J. Inorg. Chem., pp. 2361-2367 (2014). 31. Ge, W., Wang, X., Zhang, L., et al. Fully-occupied Keggin type polyoxometalate as solid base for catalyzing CO2 cycloaddition and Knoevenagel condensation", Cat. Sci. & Tech., 6, pp. 460-467 (2016). 32. Xu, Q., Niu, Y., Wang, G., et al. Polyoxoniobates as a superior Lewis base e_ciently catalyzed Knoevenagel condensation", J. Mol. Catal., 453, pp. 93-99 (2018). 33. Zheng, R., Zhang, H., Liu, Y., et al. Ag-ligand modi_ed tungstovandates and their e_cient catalysis degradation properties for methylene blue", J. Solid State Chem., 246, pp. 258-263 (2017). 34. Liu, Y., Zheng, R., Han, Z., et al. Supramolecular hybrids of polytungstates and their adsorption properties for methylene blue", J. Solid State Chem., 231, pp. 169-174 (2015). 35. Tella, A.C., Olawale, M.D., Neuburger, M., et al. Synthesis and crystal structure of Cd-based metalorganic framework for removal of methyl-orange from aqueous solution", J. Solid State Chem., 255, pp. 157- 166 (2017). 36. Yan, J., Zhao, X., Huang, J., et al. Synthesis and characterization of two polyoxometalates consisting of di_erent Cu-ligand hydrogen phosphate units", J. Solid State Chem., 211, pp. 200-205 (2014). 37. Teng, C., Xiao, H., Cai, Q., et al. Two supramolecular complexes based on polyoxometalates and Co-EDTA units via covalent connection or non-covalent interaction", J. Solid State Chem., 243, pp. 146-153 (2016). 38. Zhang, H., Guo, L., Jiao, J., et al. Ionic self-assembly of polyoxometalate-dopamine hybrid nanoowers with excellent catalytic activity for dyes", ACS Sustain Chem Eng., 5, pp. 1358-1367 (2017). 3398 B. Safarkoopayeh et al./Scientia Iranica, Transactions C: Chemistry and ... 26 (2019) 3387{3399 39. Farhadi, S., Mahmoudi, F., Amini, M.M., et al. Synthesis and characterization of a series of novel perovskite-type LaMnO3/Keggin-type polyoxometalate hybrid nanomaterials for fast and selective removal of cationic dyes from aqueous solutions", J. Chem. Soc., Dalton Trans., 46, pp. 3252-3264 (2017). 40. Herrmann, S., Matteis, L., de la Fuente, J., et al. Removal of multiple contaminants from water by polyoxometalate supported ionic liquid phases (POMSILPs)", Angew. Chem. Int. Ed., 56, pp. 1667-1670 (2017). 41. Santos, I., Loureiro, L., Silva, M., et al. Studies on the hydrothermal synthesis of niobium oxides", Polyhedron., 21, pp. 2009-2015 (2002). 42. Sheldrick, G.M. A short history of SHELX", Acta Crystallogr Sect A: Found Crystallogr, 64, pp. 112-122 (2008). 43. Perdew, J.P., Ernzerhof, M., and Burke, K. Rationale for mixing exact exchange with density functional approximations", J. Chem. Phys., 105, pp. 9982-9985 (1996). 44. Weigend, F. and Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy", Phys. Chem. Chem. Phys., 7, pp. 3297-3305 (2005). 45. Neese, F. The ORCA program system", Wires Comput Mol Sci., 2, pp. 73-78 (2012). 46. Weinhold, F. and Landis, C.R. Natural bond orbitals and extensions of localized bonding concepts", Chem Educ Res Pract., 2, pp. 91-104 (2001). 47. Lu, T. and Chen, F. Multiwfn: a multifunctional wavefunction analyzer", J. Comput. Chem., 33, pp. 580-592 (2012). 48. Spackman, M.A. and Jayatilaka, D. Hirshfeld surface analysis", CrystEngComm, 11, pp. 19-32 (2009). 49. Hirshfeld, F.L. Bonded-atom fragments for describing molecular charge densities" , Theor. Chem. Acc., 44, pp. 129-138 (1977). 50. Clausen, H.F., Chevallier, M.S., Spackman, M.A., et al. Three new co-crystals of hydroquinone: crystal structures and Hirshfeld surface analysis of intermolecular interactions", New J. Chem., 34, pp. 193-199 (2010). 51. Rohl, A.L., Moret, M., Kaminsky, W., et al. Hirshfeld surfaces identify inadequacies in computations of intermolecular interactions in crystals: pentamorphic 1, 8-dihydroxyanthraquinone", Cryst. Growth Des., 8, pp. 4517-4525 (2008). 52. Parkin, A., Barr, G.J., Spackman, M.A., et al. Comparing entire crystal structures: structural genetic _ngerprinting", CrystEngComm, 9, pp. 648-652 (2007). 53. Spackman, M.A. and McKinnon, J.J. Fingerprinting intermolecular interactions in molecular crystals", CrystEngComm, 4, pp. 378-392 (2002). 54. Wol_, S., Grimwood, D., McKinnon, J., Jayatilaka, D., and Spackman, M. (2007). 55. Bader, R., The Quantum Theory of Atoms in Molecules, Clarendon Press, Oxford (1990). 56. Matta, C.F. and Boyd, R.J. An introduction to the quantum theory of atoms in molecules", The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design, Wiley (2007). 57. Johnson, E.R., Keinan, S., Mori-Sanchez, P., et al. Revealing noncovalent interactions", JACS., 132, pp. 6498-6506 (2010). 58. Black, J., Nyman, M., Casey, W. Kinetics of 17Oexchange reactions in aqueous metal-oxo nanoclusters", Geochim. Cosmochim. Acta., 70, p. A53 (2006). 59. Klamt, A. Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena", J. Phys. Chem., 99, pp. 2224-2235 (1995). 60. Klamt, A. The COSMO and COSMO-RS solvation models", Wires. Comput. Mol. Sci., 1, pp. 699-709 (2011).