Electrochemical energy conversion realized through Ag@Pt/rGO nano-catalyst enhancing activity of the ORR process in a PEMFC

Document Type : Article


Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, P.O. Box 1136594655, Iran.


Core-Shell structures of Ag@Pt nanoparticles (NPs) dispersed upon reduced graphene oxide (rGO) support containing different Ag:Pt mass ratios synthesized through the ultrasonic treatment method. These applied to the oxygen reduction reaction (ORR) process in a Proton Exchange Membrane Fuel Cell (PEMFC). The morphology of as-prepared catalysts characterized through High Resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and induced coupled plasma atomic emission spectroscopy (ICP-OES) analyses. The ORR activities and stabilities of catalysts studied through electrochemical measurements of Cyclic Voltammetry (CV) and single cell tests, respectively. The results revealed, prepared Ag@Pt/rGO catalysts possessed a Core-Shell nanostructure and the one with the Ag:Pt mass ratio of 1:3 displayed the largest electrochemical surface area (of 77.6 m2 g-1) as well as; provided the highest stability compared with prepared electrodes containing other Ag:Pt ratios and the obtained commercial Pt/C material. The maximum power density for the MEA prepared with this electrocatalyst determined to be 55% higher than that of the commercial Pt/C evaluated through single cell techniques. Thus, the understudied material seemed to be a very promising cathode for utilizing in PEM fuel cells.


Main Subjects

1. De Bruijn, F.A., Dam, V.A.T., and Janssen, G.J.M. Review: durability and degradation issues of PEM fuel cell components", Fuel Cells, 8(1), pp. 3-22 (2008). 2. Zhang, X. and Chen, J. Performance evaluation and parametric optimization of a proton exchange membrane fuel cell/heat-driven heat pump hybrid system", Fuel Cells, 12(3), pp. 313-319 (2012). 3. Gharibi, H., Golmohammadi, F., and Kheirmand, M. Palladium/cobalt coated on multi-walled carbon nanotubes as an electro-catalyst for oxygen reduction reaction in passive direct methanol fuel cells", Fuel Cells, 13(6), pp. 987-1004 (2013). 4. San Mart__n, J.I., Zamora, I., Aperribay, V., San Mart__n, J.J., Egu__a, P., and Torres, E. Performance analysis of PEM fuel cells with di_erent electrical loads", Fuel Cells, 14(2), pp. 312-324 (2014). 5. Afsahi, F., Mathieu-Potvin, F., and Kaliaguine, S. Impact of ionomer content on proton exchange membrane fuel cell performance", Fuel Cells, 16(1), pp. 107-125 (2016). 6. Sui, S., Wang, X., Zhou, X., Su, Y., Ri_at, S., and Liu, C. A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: Nanostructure, activity, mechanism and carbon support in PEM fuel cells", J. Mater. Chem. A, 5(5), pp. 1808-1825 (2017). 7. Cantillo, N.M., Goenaga, G.A., Gao, W., Williams, K., Neal, C.A., Ma, S., More, K.L., and Zawodzinski, T.A. Investigation of a microporous iron(iii) porphyrin framework derived cathode catalyst in PEM fuel cells", J. Mater. Chem. A, 4(40), pp. 15621-15630 (2016). 8. Chaisubanan, N., Maniwan, W., and Hunsom, M. Effect of heat-treatment on the performance of PtM/C (M = Cr, Pd, Co) catalysts towards the oxygen reduction reaction in PEM fuel cell", Energy, 127, pp. 454-461 (2017). 9. Zamel, N. and Li, X. A parametric study of multiphase and multi-species transport in the cathode of PEM fuel cells", Int. J. Energy Res., 32(8), pp. 698- 721 (2008). 10. Kadirgan, F., Kannan, A.M., Atilan, T., Beyhan, S., Ozenler, S.S., Suzer, S., and Yorur, A. Carbon supported nano-sized Pt-Pd and Pt-Co electrocatalysts for proton exchange membrane fuel cells", Int. J. Hydrogen Energy, 34(23), pp. 9450-9460 (2009). 11. Salgado, J.R.C., Antolini, E., and Gonzalez, E.R. Carbon supported Pt70Co30 electrocatalyst prepared by the formic acid method for the oxygen reduction reaction in polymer electrolyte fuel cells", J. Power Sources, 141(1), pp. 13-18 (2005). A. Esfandiari and M. Kazemeini/Scientia Iranica, Transactions C: Chemistry and ... 26 (2019) 3415{3430 3427 12. Fang, B., Luo, J., Njoki, P.N., Loukrakpam, R., Wanjala, B., Hong, J., Yin, J., Hu, X., Last, J., and Zhong, C.-J. Nano-engineered PtVFe catalysts in proton exchange membrane fuel cells: Electrocatalytic performance", Electrochim. Acta, 55(27), pp. 8230- 8236 (2010). 13. Col_on-Mercado, H.R., Kim, H., and Popov, B.N. Durability study of Pt3Ni1 catalysts as cathode in PEM fuel cells", Electrochem. Commun., 6(8), pp. 795- 799 (2004). 14. Salom_e, S., Ferraria, A.M., Botelho do Rego, A.M., Alcaide, F., Savadogo, O., and Rego, R. Enhanced activity and durability of novel activated carbonsupported PdSn heat-treated cathode catalyst for polymer electrolyte fuel cells", Electrochim. Acta, 192, pp. 268-282 (2016). 15. He, C. and Tao, J. Pt loaded two-dimensional TaCnanosheet/ graphene hybrid as an e_cient and durable electrocatalyst for direct methanol fuel cells", J. Power Sources, 324, pp. 317-324 (2016). 16. Zhong, H., Zhang, H., Liu, G., Liang, Y., Hu, J., and Yi, B. A novel non-noble electrocatalyst for PEM fuel cell based on molybdenum nitride", Electrochem. Commun., 8(5), pp. 707-712 (2006). 17. Col_on-Mercado, H.R. and Popov, B.N. Stability of platinum based alloy cathode catalysts in PEM fuel cells", J. Power Sources, 155(2), pp. 253-263 (2006). 18. Ma, Y., Zhang, H., Zhong, H., Xu, T., Jin, H., and Geng, X. High active PtAu/C catalyst with coreshell structure for oxygen reduction reaction", Catal. Commun., 11(5), pp. 434-437 (2010). 19. Saha, M.S., Li, R., Cai, M., and Sun, X. Nanowirebased three-dimensional hierarchical core/shell heterostructured electrodes for high performance proton exchange membrane fuel cells", J. Power Sources, 185(2), pp. 1079-1085 (2008). 20. Cai, Z., Zhang, D., Cheng, K., Song, C., Li, Y., Ye, K., Yan, P., Cao, D., and Wang, G. Platinum nanoparticles anchored on TiO2/C nanowires as a high performance catalyst for hydrogen peroxide eletroreduction", Fuel Cells, 16(5), pp. 646-651 (2016). 21. Di Noto, V. and Negro, E. Development of nanoelectrocatalysts based on carbon nitride supports for the ORR processes in PEM fuel cells", Electrochim. Acta, 55(26), pp. 7564-7574 (2010). 22. Tedsree, K., Li, T., Jones, S., Chan, C.W.A., Yu, K.M.K., Bagot, P.A.J., Marquis, E.A., Smith, G.D.W., and Tsang, S.C.E. Hydrogen production from formic acid decomposition at room temperature using a Ag- Pd core-shell nanocatalyst", Nat. Nanotechnol., 6, p. 302 (2011). 23. Strasser, P., Koh, S., Anniyev, T., Greeley, J., More, K., Yu, C., Liu, Z., Kaya, S., Nordlund, D., Ogasawara, H., Toney, M.F., and Nilsson, A. Latticestrain control of the activity in dealloyed core-shell fuel cell catalysts", Nat. Chem., 2(6), pp. 454-460 (2010). 24. Wang, G., Guan, J., Xiao, L., Huang, B., Wu, N., Lu, J., and Zhuang, L. Pd skin on AuCu intermetallic nanoparticles: A highly active electrocatalyst for oxygen reduction reaction in alkaline media", Nano Energy, 29, pp. 268-274 (2016). 25. Trongchuankij, W., Pruksathorn, K., and Hunsom, M. Preparation of a high performance Pt-Co/C electrocatalyst for oxygen reduction in PEM fuel cell via a combined process of impregnation and seeding", Appl. Energy, 88(3), pp. 974-980 (2011). 26. Vasile, N.S., Doherty, R., Monteverde Videla, A.H.A., and Specchia, S. 3D multi-physics modeling of a gas di_usion electrode for oxygen reduction reaction for electrochemical energy conversion in PEM fuel cells", Appl. Energy, 175, pp. 435-450 (2016). 27. Esfandiari, A., Kazemeini, M., and Bastani, D. Synthesis, characterization and performance determination of an Ag@Pt/C electrocatalyst for the ORR in a PEM fuel cell", Int. J. Hydrogen Energy, 41(45), pp. 20720-20730 (2016). 28. Van Schalkwyk, F., Pattrick, G., Olivier, J., Conrad, O., and Blair, S. Development and scale up of enhanced ORR Pt-based catalysts for PEMFCs", Fuel Cells, 16(4), pp. 414-427 (2016). 29. Holton, O.T. and Stevenson, J.W. The role of platinum in proton exchange membrane fuel cells", Platin. Met. Rev., 57(4), pp. 259-271 (2013). 30. N_rskov, J.K., Rossmeisl, J., Logadottir, A., Lindqvist, L., Kitchin, J.R., Bligaard, T., and J_onsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode", J. Phys. Chem. B, 108(46), pp. 17886-17892 (2004). 31. Lin, R., Cao, C., Zhao, T., Huang, Z., Li, B., Wieckowski, A., and Ma, J. Synthesis and application of core-shell Co@Pt/C electrocatalysts for proton exchange membrane fuel cells", J. Power Sources, 223, pp. 190-198 (2013). 32. Kristian, N., Yu, Y., Lee, J.-M., Liu, X., and Wang, X. Synthesis and characterization of Cocore-Ptshell electrocatalyst prepared by spontaneous replacement reaction for oxygen reduction reaction", Electrochim. Acta, 56(2), pp. 1000-1007 (2010). 33. Chen, T.-Y., Lee, G.-W., Liu, Y.-T., Liao, Y.-F., Huang, C.-C., Lin, D.-S., and Lin, T.-L. Heterojunction con_nement on the atomic structure evolution of near monolayer core-shell nanocatalysts in redox reactions of a direct methanol fuel cell", J. Mater. Chem. A, 3(4), pp. 1518-1529 (2015). 34. Wongkaew, A., Zhang, Y., Tengco, J.M.M., Blom, D.A., Sivasubramanian, P., Fanson, P.T., Regalbuto, J.R., and Monnier, J.R. Characterization and evaluation of Pt-Pd electrocatalysts prepared by electroless 3428 A. Esfandiari and M. Kazemeini/Scientia Iranica, Transactions C: Chemistry and ... 26 (2019) 3415{3430 deposition", Appl. Catal. B Environ., 188, pp. 367-375 (2016). 35. Chatenet, M., Genies-Bultel, L., Aurousseau, M., Durand, R., and Andolfatto, F. Oxygen reduction on silver catalysts in solutions containing various concentrations of sodium hydroxide - comparison with platinum", J. Appl. Electrochem., 32(10), pp. 1131- 1140 (2002). 36. Yang, J., Lee, J.Y., Chen, L.X., and Too, H.-P. A phase-transfer identi_cation of core-shell structures in Ag-Pt nanoparticles", J. Phys. Chem. B, 109(12), pp. 5468-5472 (2005). 37. Neyerlin, K.C., Srivastava, R., Yu, C., and Strasser, P. Electrochemical activity and stability of dealloyed Pt-Cu and Pt-Cu-Co electrocatalysts for the oxygen reduction reaction (ORR)", J. Power Sources, 186(2), pp. 261-267 (2009). 38. Yu, S., Lou, Q., Han, K., Wang, Z., and Zhu, H. Synthesis and electrocatalytic performance of MWCNTsupported Ag@Pt core-shell nanoparticles for ORR", Int. J. Hydrogen Energy, 37(18), pp. 13365-13370 (2012). 39. Yu, S., Liu, R., Yang, W., Han, K., Wang, Z., and Zhu, H. Synthesis and electrocatalytic performance of MnO2-promoted Ag@Pt/MWCNT electrocatalysts for oxygen reduction reaction", J. Mater. Chem. A, 2(15), pp. 5371-5378 (2014). 40. Koh, J.-H., Abbaraju, R., Parthasarathy, P., and Virkar, A.V. Design and synthesis of degradationresistant core-shell catalysts for proton exchange membrane fuel cells", J. Power Sources, 261, pp. 271-277 (2014). 41. Gasteiger, H.A., Kocha, S.S., Sompalli, B., and Wagner, F.T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs", Appl. Catal. B Environ., 56(1), pp. 9-35 (2005). 42. Yu, X. and Ye, S. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part I. Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst", J. Power Sources, 172(1), pp. 133-144 (2007). 43. Du, L., Shao, Y., Sun, J., Yin, G., Liu, J., and Wang, Y. Advanced catalyst supports for PEM fuel cell cathodes", Nano Energy, 29, pp. 314-322 (2016). 44. Yu, X. and Ye, S. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part II: Degradation mechanism and durability enhancement of carbon supported platinum catalyst", J. Power Sources, 172(1), pp. 145-154 (2007). 45. Wang, J., Yin, G., Shao, Y., Zhang, S., Wang, Z., and Gao, Y. E_ect of carbon black support corrosion on the durability of Pt/C catalyst", J. Power Sources, 171(2), pp. 331-339 (2007). 46. Fashedemi, O.O., Miller, H.A., Marchionni, A., Vizza, F., and Ozoemena, K.I. Electro-oxidation of ethylene glycol and glycerol at palladium-decorated FeCo@Fe core-shell nanocatalysts for alkaline direct alcohol fuel cells: functionalized MWCNT supports and impact on product selectivity", J. Mater. Chem. A, 3(13), pp. 7145-7156 (2015). 47. He, C. and Shen, P.K. Synthesis of the nitrogendoped carbon nanotube (NCNT) bouquets and their electrochemical properties", Electrochem. Commun., 35, pp. 80-83 (2013). 48. Shao, Y., Zhang, S., Kou, R., Wang, X., Wang, C., Dai, S., Viswanathan, V., Liu, J., Wang, Y., and Lin, Y. Noncovalently functionalized graphitic mesoporous carbon as a stable support of Pt nanoparticles for oxygen reduction", J. Power Sources, 195(7), pp. 1805-1811 (2010). 49. Sebasti_an, D., Calder_on, J.C., Gonz_alez-Exp_osito, J.A., Pastor, E., Mart__nez-Huerta, M.V., Suelves, I., Moliner, R., and L_azaro, M.J. Inuence of carbon nano_ber properties as electrocatalyst support on the electrochemical performance for PEM fuel cells", Int. J. Hydrogen Energy, 35(18), pp. 9934-9942 (2010). 50. He, D., Cheng, K., Peng, T., Pan, M., and Mu, S. Graphene/carbon nanospheres sandwich supported PEM fuel cell metal nanocatalysts with remarkably high activity and stability", J. Mater. Chem. A, 1(6), pp. 2126-2132 (2013). 51. He, C. and Shen, P.K. Pt loaded on truncated hexagonal pyramidWC/graphene for oxygen reduction reaction", Nano Energy, 8, pp. 52-61 (2014). 52. Antolini, E. Graphene as a new carbon support for low-temperature fuel cell catalysts", Appl. Catal. B Environ., 123-124, pp. 52-68 (2012). 53. Huang, H., Chen, H., Sun, D., and Wang, X. Graphene nanoplate-Pt composite as a high performance electrocatalyst for direct methanol fuel cells", J. Power Sources, 204, pp. 46-52 (2012). 54. He, C., Tao, J., He, G., and Shen, P.K. Ultrasmall molybdenum carbide nanocrystals coupled with reduced graphene oxide supported Pt nanoparticles as enhanced synergistic catalyst for methanol oxidation reaction", Electrochim. Acta, 216, pp. 295-303 (2016). 55. Hummers, W.S. and O_eman, R.E. Preparation of graphitic oxide", J. Am. Chem. Soc., 80(6), p. 1339 (1958). 56. Shin, H.-J., Kim, K.K., Benayad, A., Yoon, S.-M., Park, H.K., Jung, I.-S., Jin, M.H., Jeong, H.-K., Kim, J.M., Choi, J.-Y., and Lee, Y.H. E_cient reduction of graphite oxide by sodium borohydride and its e_ect on electrical conductance", Adv. Funct. Mater., 19(12), pp. 1987-1992 (2009). 57. Gharibi, H., Yasi, F., Kazemeini, M., Heydari, A., and Golmohammadi, F. Fabrication of MEA based A. Esfandiari and M. Kazemeini/Scientia Iranica, Transactions C: Chemistry and ... 26 (2019) 3415{3430 3429 on sulfonic acid functionalized carbon supported platinum nanoparticles for oxygen reduction reaction in PEMFCs", RSC Adv., 5(104), pp. 85775-85784 (2015). 58. Pei, S. and Cheng, H.-M. The reduction of graphene oxide", Carbon N.Y., 50(9), pp. 3210-3228 (2012). 59. Shao, M.-H., Sasaki, K., and Adzic, R.R. Pd-Fe nanoparticles as electrocatalysts for oxygen reduction", J. Am. Chem. Soc., 128(11), pp. 3526-3527 (2006). 60. Lim, D.-H., Choi, D.-H., Lee, W.-D., and Lee, H.-I. A new synthesis of a highly dispersed and CO tolerant PtSn/C electrocatalyst for low-temperature fuel cell; its electrocatalytic activity and long-term durability", Appl. Catal. B Environ., 89(3), pp. 484-493 (2009). 61. Pech-Pech, I.E., Gervasio, D.F., and P_erez-Robles, J.F. Nanoparticles of Ag with a Pt and Pd rich surface supported on carbon as a new catalyst for the oxygen electroreduction reaction (ORR) in acid electrolytes: Part 2", J. Power Sources, 276, pp. 374-381 (2015). 62. Nguyen, T.-T., Pan, C.-J., Liu, J.-Y., Chou, H.-L., Rick, J., Su, W.-N., and Hwang, B.-J. Functional palladium tetrapod core of heterogeneous palladiumplatinum nanodendrites for enhanced oxygen reduction reaction", J. Power Sources, 251, pp. 393-401 (2014). 63. Endo, K., Nakamura, K., Katayama, Y., and Miura, T. Pt-Me (Me = Ir, Ru, Ni) binary alloys as an ammonia oxidation anode", Electrochim. Acta, 49(15), pp. 2503- 2509 (2004). 64. Yan, W., Tang, Z., Wang, L., Wang, Q., Yang, H., and Chen, S. PdAu alloyed clusters supported by carbon nanosheets as e_cient electrocatalysts for oxygen reduction", Int. J. Hydrogen Energy, 42(1), pp. 218-227 (2017). 65. Goncalves, G., Marques, P.A.A.P., Granadeiro, C.M., Nogueira, H.I.S., Singh, M.K., and Gr_acio, J. Surface modi_cation of graphene nanosheets with gold nanoparticles: The role of oxygen moieties at graphene surface on gold nucleation and growth", Chem. Mater., 21(20), pp. 4796-4802 (2009). 66. Tang, X.-Z., Li, X., Cao, Z., Yang, J., Wang, H., Pu, X., and Yu, Z.-Z. Synthesis of graphene decorated with silver nanoparticles by simultaneous reduction of graphene oxide and silver ions with glucose", Carbon N.Y., 59, pp. 93-99 (2013). 67. Wang, R., Li, H., Feng, H., Wang, H., and Lei, Z. Preparation of carbon-supported core@shell PdCu@PtRu nanoparticles for methanol oxidation", J. Power Sources, 195(4), pp. 1099-1102 (2010). 68. Qiu, J.-D., Wang, G.-C., Liang, R.-P., Xia, X.-H., and Yu, H.-W. Controllable deposition of platinum nanoparticles on graphene as an electrocatalyst for direct methanol fuel cells", J. Phys. Chem. C, 115(31), pp. 15639-15645 (2011). 69. Girishkumar, G., Rettker, M., Underhile, R., Binz, D., Vinodgopal, K., McGinn, P., and Kamat, P. Singlewall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells", Langmuir, 21(18), pp. 8487-8494 (2005). 70. Sadeghi, S., Gharibi, H., and Golmohammadi, F. Electrooxidations of ethanol and acetaldehyde using PtSn/C and PtSnO2/C catalysts prepared by a modi _ed alcohol-reduction process", Sci. Iran., 22(6), pp. 2729-2735 (2015). 71. Amani, M., Kazemeini, M., Hamedanian, M., Pahlavanzadeh, H., and Gharibi, H. Investigation of methanol oxidation on a highly active and stable Pt-Sn electrocatalyst supported on carbon-polyaniline composite for application in a passive direct methanol fuel cell", Mater. Res. Bull., 68, pp. 166-178 (2015). 72. Lee, K., Zhang, J., Wang, H., and Wilkinson, D.P. Progress in the synthesis of carbon nanotube- and nano_ber-supported Pt electrocatalysts for PEM fuel cell catalysis", J. Appl. Electrochem., 36(5), pp. 507- 522 (2006). 73. Wei, Y.-C., Liu, C.-W., Lee, H.-W., Chung, S.-R., Lee, S.-L., Chan, T.-S., Lee, J.-F., and Wang, K.-W. Synergistic e_ect of Co alloying and surface oxidation on oxygen reduction reaction performance for the Pd electrocatalysts", Int. J. Hydrogen Energy, 36(6), pp. 3789-3802 (2011). 74. Zhao, J. and Manthiram, A. Preleached Pd-Pt-Ni and binary Pd-Pt electrocatalysts for oxygen reduction reaction in proton exchange membrane fuel cells", Appl. Catal. B Environ., 101(3), pp. 660-668 (2011). 75. Liu, R., Wu, D., Feng, X., and Mullen, K. Nitrogendoped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction", Angew. Chemie, 122(14), pp. 2619-2623 (2010). 76. Wroblowa, H.S., Pan, Y.C., and Razumney, G. Electroreduction of oxygen: A new mechanistic criterion", J. Electroanal. Chem. Interfacial Electrochem., 69(2), pp. 195-201 (1976). 77. Zhang, J., Tang, Y., Song, C., and Zhang, J. Polybenzimidazole-membrane-based PEM fuel cell in the temperature range of 120-200_C", J. Power Sources, 172(1), pp. 163-171 (2007). 78. Yuan, X. Z., Song, C., Wang, H., and Zhang, J., Electrochemical Impedance Spectroscopy in PEM Fuel Cells: Fundamentals and Applications, Springer London (2010). 79. Gharibi, H., Sadeghi, S., and Golmohammadi, F. Electrooxidation of ethanol on highly active and stable carbon supported PtSnO2 and its application in passive direct ethanol fuel cell: E_ect of tin oxide synthesis method", Electrochim. Acta, 190, pp. 1100- 1112 (2016). 80. Wang, X., Li, W., Chen, Z., Waje, M., and Yan, 3430 A. Esfandiari and M. Kazemeini/Scientia Iranica, Transactions C: Chemistry and ... 26 (2019) 3415{3430 Y. Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell", J. Power Sources, 158(1), pp. 154-159 (2006). 81. Yu, P., Pemberton, M., and Plasse, P. PtCo/C cathode catalyst for improved durability in PEMFCs", J. Power Sources, 144(1), pp. 11-20 (2005). 82. Seger, B. and Kamat, P.V. Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells", J. Phys. Chem. C, 113(19), pp. 7990-7995 (2009).