A new computing perturb-and-observe-type algorithm for MPPT in solar photovoltaic systems and evaluation of its performance against other variants by experimental validation

Document Type : Article

Authors

1 Department of Electrical Engineering, Mehran University of Engineering and Technology, Jamshoro, Pakistan

2 Department of Electrical Engineering, Mehran University of Engineering and Technology, Jamshoro, Pakistan.

3 b. Department of Basic Sciences and Related Studies, Mehran University of Engineering and Technology, Jamshoro, Pakistan.; Supply Chain and Operations Management Research Group, Mehran University of Engineering and Technology, Jamshoro, Pakistan.

Abstract

Solar energy is becoming a mainstream energy source with considerable attention from analysts these days. The photovoltaic (PV) system’s output power fluctuates with temperature and sunlight affecting its efficiency. To extract accessible power by PV system, maximum power point tracking (MPPT) method is used. A famous strategy, regularly utilized for simplicity and low cost, is the Perturb and Observe (PO) algorithm. However, there are a few downsides of PO algorithm, which result in power loss and low efficiency. We evaluate the performance of the conventional PO against some of its enhancements, specially a recent PO-variant, for MPPT. Experiments are conducted at different irradiances and temperature levels in two ways: with load and with battery, by conventional PO and its variants. Outlining strategy to reach optima and stability of the methods are discussed. The PO variants are rated from view-points of stability, accuracy, post-MPP oscillations and tracking speed. The recommendations can prove to be fruitful for the practitioners working with MPPT in PV solar systems using PO algorithms. The validation of simulation results has been made using the real time experimental results. The new PO-variant appears to be a reliable computing algorithm for MPPT in solar PV systems.

Keywords


1. Azab, M. A new maximum power point tracking for  photovoltaic systems", WASET. ORG, 34, pp. 571-574  (2008).  2. Awan, M.M., Afzal, M., and Awan, F.G. Improvement  of maximum power point tracking perturb and  observe algorithm for a standalone solar photovoltaic  system", Mehran University Research Journal of Engineering  and Technology, 36(3), pp. 501-510 (2017).  3. Putri, R.I., Wibowo, S., and Rifa'I, M. Maximum  power point tracking for photovoltaic using incremental  conductance method", Energy Procedia, 68, pp. 22-  30 (2015).  4. Babaa, S.E., Armstrong, M., and Pickert, W.  Overview of maximum power point tracking control  methods for PV systems", Journal of Power and  Energy Engineering, 2(8), p. 59 (2014).  5. Rezk, H. and Eltamaly, A.M. A comprehensive comparison  of di_erent MPPT techniques for photovoltaic  systems", Solar Energy, 112, pp. 1-11 (2015).  6. Bahrami, M., Gavagsaz-Ghoachani, R., Zandi, M., et  al. Hybrid maximum power point tracking algorithm  with improved dynamic performance", Renewable Energy,  130, pp. 982-991 (2019).  7. Chaieb, H. and Sakly, A. A novel MPPT method for  photovoltaic application under partial shaded conditions",  Solar Energy, 159, pp. 291-299 (2018).  8. Salas, V., Olias, E., Barrado, A., et al. Review of the  maximum power point tracking algorithms for standalone  photovoltaic systems", Solar Energy Materials  and Solar Cells, 90(11), pp. 1555-1578 (2006).  9. Thenkani, A. and Kumar, N.S. Design of optimum  maximum power point tracking algorithm for  solar panel", International Conference on Computer,  Communication and Electrical Technology (ICCCET),  IEEE (2011).  10. Abdel-Salam, M., El-Mohandes, M., and Goda,  M. An improved perturb-and-observe based MPPT  method for PV systems under varying irradiation  levels", Solar Energy, 171, pp. 547-561 (2018).  11. Devi, V.K., Premkumar, K., Beevi, A.B., et al.  A modi_ed perturb & observe MPPT technique to  tackle steady state and rapidly varying atmospheric  conditions", Solar Energy, 157, pp. 419-426 (2017).  12. Alik, R. and Jusoh, A. Modi_ed perturb and observe  (P&O) with checking algorithm under various solar  irradiation", Solar Energy, 148, pp. 128-139(2017).  13.  Oz_celik, M.A. and Y_lmaz, A.S. E_ect of maximum  power point tracking in photovoltaic systems and  its improving and its application of wireless energy  transmission", Journal of Clean Energy Technologies,  3(6), pp. 441-416 (2015).  14. Soulatiantork, P. Performance comparison of a two  PV module experimental setup using a modi_ed  MPPT algorithm under real outdoor conditions", Solar  Energy, 169, pp. 401-410 (2018).  15. Alik, R. and Jusoh, A. An enhanced P&O checking algorithm  MPPT for high tracking e_ciency of partially  shaded PV module", Solar Energy, 163, pp. 570-580  (2018).  16. Rajani, S.V. and Pandya, V.J. Experimental veri  _cation of the rate of charge improvement using  photovoltaic MPPT hardware for the battery and  ultracapacitor storage devices", Solar Energy, 139, pp.  142-148 (2016).  17. Tang, R., Wu, Z., and Fang, Y. Con_guration of  marine photovoltaic system and its MPPT using model  predictive control", Solar Energy, 158, pp. 995-1005  (2017).  18. Shahid, H., Kamran, M., Mehmood, Z., et al. Implementation  of the novel temperature controller and  incremental conductance MPPT algorithm for indoor  photovoltaic system", Solar Energy, 163, pp. 235-242  (2018).  19. Arsalan, M., Iftikhar, R., Ahmad, I., et al. MPPT  for photovoltaic system using nonlinear backstepping  controller with integral action", Solar Energy, 170, pp.  192-200 (2018).  20. El-Khatib, M.F., Shaaban, S., and El-Sebah, M.I. A  proposed advanced maximum power point tracking  control for a photovoltaic-solar pump system", Solar  Energy, 158, pp. 321-331 (2017).  21. Gomathy, S., Saravanan, S., and Thangavel, S. Design  and implementation of maximum power point  tracking (MPPT) algorithm for a standalone PV system",  International Journal of Scienti_c & Engineering  Research, 3(3), pp. 1-7 (2012).  22. Swathy, A. and Archana, R. Maximum power point  tracking using modi_ed incremental conductance for  solar photovoltaic system", Int. J. Eng. Innov. Technol.(  IJEIT), 3(2), pp. 333-337 (2013).  23. Esram, T. and Chapman, P.L. Comparison of photovoltaic  array maximum power point tracking techniques",  IEEE Transactions on Energy Conversion,  22(2), pp. 439-449 (2007).  V. Bhan et al./Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 3656{3671 3671  24. Wanzeller, M.G., Alves, R.N.C., da Fonseca Neto,  J.V., et al. Current control loop for tracking of  maximum Alves, power point supplied for photovoltaic  array", IEEE Transactions on Instrumentation and  Measurement, 53(4), pp. 1304-1310 (2004).  25. Beydaghi, S., Vahidi, B., Ankouti, Y., et al. Simulation  of improved perturb and observe MPPT using  Sepic converter", Science International, 27(3) (2015).  26. Santos, T.J.A. and Galhardo, A. A perturbation and  observation routine used to control a power converter",  Sixth World Congress on Nature and Biologically Inspired  Computing (NaBIC), IEEE (2014).  27. Abdelsalam, A.K., Massoud, A.M., Ahmed, S., et  al. High-performance adaptive perturb and observe  MPPT technique for photovoltaic-based microgrids",  IEEE Transactions on Power Electronics, 26(4), pp.  1010-1021 (2011).