Evaluation of online techniques utilized for extracting the transformer transfer function

Document Type : Article


School of electrical and computer engineering, University of Tehran, North Kargar Ave.,Tehran 14395/515, Iran


Power transformers have vital importance in the power delivery and, therefore, different diagnostic techniques are proposed for them. The frequency response analysis (FRA) is an effective method which detects the mechanical changes in transformer windings by extracting the transfer function. There are various approaches for obtaining the transfer function online, which is known as the online FRA technique. This paper compares these different mathematical approaches for obtaining the transfer function of a transformer. The comparison is carried out by defining an appropriate model for the transformer and applying these mathematical methods to it. The effect of other power network equipment on the transformer transfer function is also studied in this paper. The results of this contribution determine the proper methods for the online FRA technique, which can be used in the transformer monitoring applications.


1.Bagheri, M., Naderi, M.S., and Blackburn, T. Advanced  transformer winding deformation diagnosis:  moving from o_-line to on-line", IEEE Transactions on  Dielectrics and Electrical Insulation, 19(6), pp. 1860-  1870 (2012). 
2. Su, C.Q. Case study: lessons learned from the failure  of a new 230-kV transformer-cable termination",  IEEE Electrical Insulation Magazine, 26(1), pp. 15-19  (2010). 
3. Tenbohlen, S., Coenen, S., Djamali, M., et al. Diagnostic  measurements for power transformers", Energies,  9(5), p. 347 (2016). 
4. Samimi, M.H., Akmal, A.A.S., Mohseni, H., et al.  Open-core optical current transducer: modeling and  experiment", IEEE Transactions on Power Delivery,  31(5), pp. 2028-2035 (2016).  5. G_omez-Luna, E., Mayor, G.A., Guerra, J.P., et  al. Application of wavelet transform to obtain the  frequency response of a transformer from transient  signals-Part 1: theoretical analysis", IEEE Transactions  on Power Delivery, 28(3), pp. 1709-1714 (2013).  6. Gomez-Luna, E., Mayor, G.A., Gonzalez-Garcia, C.,  et al. Current status and future trends in frequencyresponse  analysis with a transformer in service", IEEE  Transactions on Power Delivery, 28(2), pp. 1024-1031  (2013).  7. Yao, C. Transformer winding deformation diagnostic  system using online high frequency signal injection  by capacitive coupling", IEEE Transactions on Dielectrics  and Electrical Insulation, 21(4), pp. 1486-  1492 (2014).  8. Abu-Siada, A. and Islam, S. A novel online technique  to detect power transformer winding faults", IEEE  Transactions on Power Delivery, 27(2), pp. 849-857  (2012).  9. Samimi, M.H., Tenbohlen, S., Akmal, A.A.S., et al.  Dismissing uncertainties in the FRA interpretation",  IEEE Transactions on Power Delivery, 33(4), pp.  2041-2043 (2018).  10. Wang, M., Vandermaar, A.J., and Srivastava, K.D.  Review of condition assessment of power transformers  in service", IEEE Electrical Insulation Magazine,  18(6), pp. 12-25 (2002).  11. Tenbohlen, S. Experienced-based evaluation of economic  bene_ts of on-line monitoring systems for power  transformers", Cigr_e Session 2002, pp. 12-110 (2002).  12. Zhao, X., Yao, C., Zhao, Z., et al. Performance  evaluation of online transformer internal fault detection  based on transient overvoltage signals", IEEE  Transactions on Dielectrics and Electrical Insulation,  24(6), pp. 3906-3915 (2017).  13. Zhao, Z., Yao, C., Yan, M., et al. Application of short  time Fourier transform to obtain impulse frequency  response curves of transformer winding deformation",  in 2015 IEEE Conference on Electrical Insulation and  Dielectric Phenomena (CEIDP), pp. 314-317 (2015).  14. Gomez-Luna, E., Silva, D., Aponte, G., et al. Obtaining  the electrical impedance using wavelet transform  from the time response", IEEE Transactions on Power  Delivery, 28(2), pp. 1242-1244 (2013).  15. Rybel, T.D., Singh, A., Vandermaar, J.A., et al. Apparatus  for online power transformer winding monitoring  using bushing tap injection", IEEE Transactions  on Power Delivery, 24(3), pp. 996-1003 (2009).  16. Behjat, V., Vahedi, A., Setayeshmehr, A., et al.  Diagnosing shorted turns on the windings of power  transformers based upon online FRA using capacitive  and inductive couplings", IEEE Transactions on  Power Delivery, 26(4), pp. 2123-2133 (2011).  17. Zhao, Z., Yao, C., Zhao, X., et al. Impact of capacitive  coupling circuit on online impulse frequency response  of a power transformer", IEEE Transactions on Dielectrics  and Electrical Insulation, 23(3), pp. 1285-  1293 (2016).  18. Tarimoradi, H. and Gharehpetian, G.B. Novel calculation  method of indices to improve classi_cation of  transformer winding fault type, location, and extent",  IEEE Transactions on Industrial Informatics, 13(4),  pp. 1531-1540 (2017).  19. Samimi, M.H., Tenbohlen, S., Akmal, A.A.S., et al.  E_ect of di_erent connection schemes, terminating  resistors and measurement impedances on the sensitivity  of the FRA method", IEEE Transactions on Power  Delivery, 32(4), pp. 1713-1720 (2017).  20. Samimi, M.H. and Tenbohlen, S. Using the temperature  dependency of the FRA to evaluate the pressure  of the transformer press ring", IEEE Transactions on  Power Delivery, 33(4), pp. 2050-2052 (2018).  21. Rahimpour, E., Christian, J., Feser, K., et al. Transfer  function method to diagnose axial displacement and  radial deformation of transformer windings", IEEE  Transactions on Power Delivery, 18(2), pp. 493-505  (2003).