Resilient supplier selection in complex products and their subsystem supply chains under uncertainty and risk disruption: A case study for satellite components

Document Type : Article

Authors

1 School of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran

2 Management and Industrial Engineering Department, Malek Ashtar University of Technology, Tehran, Iran

3 - School of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran. - National Elites Foundation of Iran, Tehran, Iran

4 School of Industrial Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran

Abstract

Recently, the manufactures of complex product and its subsystems have faced a series of disruptions and troublesome behaviors in supplying goods and items. Likewise, suppliers in this area are more likely to be affected by external risks, in turn eventuating in disturbances. Selecting resilient and expedient suppliers dramatically decreases the delay time and costs and contributes to the competitiveness and development of the companies and organizations in this field. In this regard, this paper aims at proposing a bi-objective robust mathematical model to provide resilience supplier selection and order allocation for complex products and its subsystems in response to uncertainty and disruption risks. In the proposed model, a robust optimization approach is deployed, providing stable decisions for the proposed problem. Also, different resilience strategies including restoring supply from occurred disruptions, fortification of the suppliers, using backup suppliers, and utilizing the extra production capacity for suppliers have been devised to tolerate disruptions. Meanwhile, the augmented ε-constraint method is used, ensuring the optimal strong Pareto solutions and preventing the weak ones for the proposed bi-objective model. The evaluation of the effectiveness and desirability of the developed model is explored by discussing a real case study, via which helpful managerial insights are gained.

Keywords

Main Subjects


References  1. Kiamehr, M., Hobday, M., and Hamedi, M. Latecomer  _rm strategies in complex product systems  (CoPS): The case of Iran's thermal electricity generation  systems", Research Policy, 44(6), pp. 1240{1251  (2015).  2. Davies, A. and Hobday, M., The Business of Projects:  Managing Innovation in Complex Products and Systems,  Cambridge University Press (2005).  3. Acha, V., Davies, A., Hobday, M., Salter, A. Exploring  the capital goods economy: complex product  systems in the UK", Industrial and Corporate Change,  13(3), pp. 505{529 (2004).  4. Davies, A. and Brady, T. Policies for a complex  product system", Futures, 30(4), p. 293{304 (1998).  O. Solgi et al./Scientia Iranica, Transactions E: Industrial Engineering 28 (2021) 1802{1816 1815  5.  Ozdemir, E.D., Hardtlein, M., Jenssen, T., Zech, D.,  and Eltrop, L. A confusion of tongues or the art of  aggregating indicators-Reections on four projective  methodologies on sustainability measurement", Renewable  and Sustainable Energy Reviews, 15(5), pp.  2385{2396 (2011).  6. Hansen, K.L. and Rush, H. Hotspots in complex  product systems: emerging issues in innovation management",  Technovation, 18(8-9), pp. 555{590 (1998).  7. Du, B., Guo, S., Huang X., Li, Y., and Guo, J. A  Pareto supplier selection algorithm for minimum the  life cycle cost of complex product system", Expert Systems  with Applications, 42(9), pp. 4253{4264 (2015).  8. Solgi, O., Gheidar-kheljani, J., Saidi Mehrabad, M.,  and Dehghani, M. Implementing an e_cient data  envelopment analysis method for assessing suppliers of  complex product systems", Journal of Industrial and  Systems Engineering, 12(2), pp. 113{137 (2019).  9. Hongzhuan, C., Zhigeng, F., Sifeng, L., and Shuai,  M. The optimal cost-sharing incentive model of main  manufacturer-suppliers for complex equipment under  grey information. in Grey Systems and Intelligent  Services", IEEE International Conference on. IEEE  (2013).  10. Waters, D., Supply Chain Risk Management: Vulnerability  and Resilience in Logistics, Kogan Page  Publishers (2011).  11. Tate, W.L., Dooley, K.J., and Ellram, L.M. Transaction  cost and institutional drivers of supplier adoption  of environmental practices", Journal of Business Logistics,  32(1), pp. 6{16 (2011).  12. She_, Y. and Rice Jr, J.B. A supply chain view of the  resilient enterprise", MIT Sloan Management Review,  47(1), p. 41 (2005).  13. Zhang, Y., et al., A metaheuristic approach to the  reliable location routing problem under disruptions",  Transportation Research Part E: Logistics and Transportation  Review, 83, pp. 90{110 (2015).  14. Sadghiani, N.S., Torabi, S., and Sahebjamnia, N.  Retail supply chain network design under operational  and disruption risks", Transportation Research Part E:  Logistics and Transportation Review, 75, pp. 95{114  (2015).  15. Torabi, S., Baghersad, M., and Mansouri, S. Resilient  supplier selection and order allocation under operational  and disruption risks", Transportation Research  Part E: Logistics and Transportation Review, 79, pp.  22{48 (2015).  16. Jabbarzadeh, A., Fahimnia, B., and Sabouhi, F. Resilient  and sustainable supply chain design: sustainability  analysis under disruption risks", International  Journal of Production Research, 56(17), pp. 5945{5968  (2018).  17. Hasani, A. and Khosrojerdi, A. Robust global supply  chain network design under disruption and uncertainty  considering resilience strategies: A parallel memetic  algorithm for a real-life case study", Transportation  Research Part E: Logistics and Transportation Review,  87, pp. 20{52 (2016).  18. Garcia-Herreros, P., Wassick, J.M., and Grossmann,  I.E. Design of resilient supply chains with risk of facility  disruptions", Industrial & Engineering Chemistry  Research, 53(44), pp. 17240{17251 (2014).  19. Ivanov, S.V. and Morozova, M. Stochastic problem  of competitive location of facilities with quantile criterion",  Automation and Remote Control, 77(3), pp.  451{461 (2016).  20. Torabi, S., Sou_, H.R., and Sahebjamnia, N. A new  framework for business impact analysis in business  continuity management (with a case study)", Safety  Science, 68, pp. 309{323 (2014).  21. Zahiri, B., Zhuang, J., and Mohammadi, M. Toward  an integrated sustainable-resilient supply chain: A  pharmaceutical case study", Transportation Research  Part E: Logistics and Transportation Review, 103, pp.  109{142 (2017).  22. Hosseini, S., et al. Resilient supplier selection and  optimal order allocation under disruption risks", International  Journal of Production Economics (2019).  23. Esmaeili-Najafabadi, E., et al. A joint supplier selection  and order allocation model with disruption risks  in centralized supply chain", Computers & Industrial  Engineering, 127, pp. 734{748 (2019).  24. Hosseini, S., Ivanov, D., and Dolgui, A. Review  of quantitative methods for supply chain resilience  analysis", Transportation Research Part E: Logistics  and Transportation Review, 125, pp. 285{307 (2019).  25. Parkouhi, S.V., Ghadikolaei, A.S., and Lajimi, H.F.  Resilient supplier selection and segmentation in grey  environment", Journal of Cleaner Production, 207, pp.  1123{1137 (2019).  26. Dehghani, E., et al. Resilient solar photovoltaic  supply chain network design under business-as-usual  and hazard uncertainties", Computers & Chemical  Engineering, 111, pp. 288{310 (2018).  27. Meena, P. and Sarmah, S. Multiple sourcing under  supplier failure risk and quantity discount: A genetic  algorithm approach", Transportation Research Part E:  Logistics and Transportation Review, 50, pp. 97{84  (2013).  28. Kamalahmadi, M. and Mellat-Parast, M. Developing  a resilient supply chain through supplier exibility  and reliability assessment", International Journal of  Production Research, 54(1), pp. 302{321 (2016).  29. Namdar, J., et al. Supply chain resilience for single  and multiple sourcing in the presence of disruption  risks", International Journal of Production Research,  56(6) pp. 2339{2360 (2018).  1816 O. Solgi et al./Scientia Iranica, Transactions E: Industrial Engineering 28 (2021) 1802{1816  30. Leung, S.C., et al. A robust optimization model for  multi-site production planning problem in an uncertain  environment", European Journal of Operational  Research, 181(1) pp. 224{238 (2007).  31. Yu, C.-S. and Li, H.-L. A robust optimization model  for stochastic logistic problems", International Journal  of Production Economics, 64(1{3) pp. 385{397 (2000).  32. De Rosa, V., et al. Robust sustainable bi-directional  logistics network design under uncertainty", International  Journal of Production Economics, 145(1) pp.  184{198 (2013).  33. Jabbarzadeh, A., Fahimnia, B., and Seuring, S. Dynamic  supply chain network design for the supply of  blood in disasters: a robust model with real world application",  Transportation Research Part E: Logistics  and Transportation Review, 70, pp. 225{244 (2014).  34. Mulvey, J.M., Vanderbei, R.J., and Zenios, S.A. Robust  optimization of large-scale systems", Operations  research, 43(2) pp. 264{281 (1995).  35. Hwang, C.-L. and Masud, A.S.M. Multiple objective  decision making-methods and applications: a state-ofthe-  art survey", Springer Science & Business Media, .  164 (2012).  36. Mavrotas, G. E_ective implementation of the "-  constraint method in multi-objective mathematical  programming problems", Applied mathematics and  computation, 213(2), pp. 455{465 (2009).  37. Chowdhury, M.M.H. and Quaddus, M.A. A multiple  objective optimization based QFD approach for  e_cient resilient strategies to mitigate supply chain  vulnerabilities: The case of garment industry of  Bangladesh", Omega, 57, pp. 5{21 (2015).  38. Azadeh, A., Rezaei-Malek, M., Evazabadian, F., and  Sheikhalishahi, M. Improved design of CMS by considering  operators decision-making styles", International  Journal of Production Research, 53(11), pp.  3276{3287 (2015).  39. Esmaili, M., Amjady, N., and Shayanfar, H.A. Multiobjective  congestion management by modi_ed augmented  "-constraint method", Applied Energy, 88(3),  pp. 755{766 (2011).