A hybrid model for online prediction of PM2:5 concentration: A case study

Document Type : Article

Authors

1 Department of Industrial Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

2 Environmental Pollution Monitoring Center of Mashhad, Deputy of Services, and Urban Environment, Municipality of Mashhad, Iran

Abstract

In this paper, we aim at developing a model to predict the daily average concentration of particulate matters with a diameter of less than 2.5 micrometers (PM2.5). In the introduced model, we incorporate Weather Research and Forecasting (WRF) meteorological model, Monte Carlo simulation, wavelet transform, and multilayer perceptron (MLP) neural networks. In particular, the MLP and wavelet transformation are combined for prediction. In order to predict the model’s input parameters, including wind speed, wind direction, temperature, rainfall, and temperature inversion, the WRF meteorological model is used. Finally, according to the available uncertainty in the input data and in order to achieve a more accurate prediction, the Monte Carlo simulation is utilized. In order to assess the effectiveness of the model in the real world, it has been conducted in an online mode for 35 days. Numerical results give an acceptable accuracy in terms of some widely used measures. In particular, taking into account the R measurements, it is equal to 0.831 over the set of test instances.

Keywords

Main Subjects


References 1. Molina, M.J. and Molina, L.T. Megacities and atmospheric pollution", Air. Waste. Manag. Assoc., 54, pp. 644{680 (2004). 2. Kolehmainen, M., Martikainen, H., and Ruuskanen, J. Neural networks and periodic components used in air quality forecasting", Atmos. Environ., 35, pp. 815{825 (2001). 3. Zhang, Y., Bocquet, M., Mallet, V., et al. Realtime air quality forecasting, part I: History, techniques, and current status", Atmos. Environ., 60, pp. 632{655 (2012). 4. U.S. EPA Guidelines for developing an air quality (Ozone and PM2:5) forecasting program", U.S. Environmental Protection Agency, O_ce of Air Quality Planning and Standards, Research Triangle Park, North Carolina. EPA-456/R-03-002 (2003). 5. Feng, X., Li, Q., Zhu, Y., et al. Arti_cial neural networks forecasting of PM2:5 pollution using air mass trajectory based geographic model and wavelet transformation", Atmos. Environ., 107, pp. 118{128 (2015). 6. Hrust, L., Klai_c, Z.B., Kri_zan, J., et al. Neural network forecasting of air pollutants hourly concentrations using optimised temporal averages of meteorological variables and pollutant concentrations", Atmos. Environ., 43, pp. 5588{5596 (2009). 7. Perez, P. and Gramsch, E. Forecasting hourly PM2:5 in Santiago de Chile with emphasis on night episodes", Atmos. Environ., 124, pp. 22{27 (2016). 8. Donnelly, A., Naughton, O., Broderick, B., et al. Short-term forecasting of nitrogen dioxide (NO2) levels using a hybrid statistical and air mass history modelling approach", Environ. Model. Assess., 22, pp. 231{241 (2016). 9. Fernando, H.J.S., Mammarella, M.C., Grandoni, G., et al. Forecasting PM10 in metropolitan areas: e_cacy of neural networks", Environ. Pollut., 163, pp. 62{67 (2012). 10. Genc, D.D., Yesilyurt, C., and Tuncel, G. Air pollution forecasting in Ankara, Turkey using air pollution index and its relation to assimilative capacity of the atmosphere", Environ. Monit Assess., 166, pp. 11{27 (2010). 11. Vlachogianni, A., Kassomenos, P., Karppinen, A., et al. Evaluation of a multiple regression model for the forecasting of the concentrations of NOx and PM10 in Athens and Helsinki", Sci. Total. Environ., 409, pp. 1559{1571 (2011). 12. Perez, P. and Reyes, J. An integrated neural network model for PM10 forecasting", Atmos. Environ., 40, pp. 2845{2851 (2006). 13. Arhami, M., Kamali, N., and Rajabi, M.M. Predicting hourly air pollutant levels using arti_cial neural networks coupled with uncertainty analysis by Monte Carlo simulations", Environ. Sci. Pollut. Res., 20, pp. 4777{4789 (2013). 14. Osowski, S. and Garanty, K. Forecasting of the daily meteorological pollution using wavelets and support vector machine", Eng. Appl. Artif. Intell., 20, pp. 745{ 755 (2007). 15. Luna, A.S., Paredes, M.L.L., de Oliveira, G.C.G., et al. Prediction of ozone concentration in tropospheric levels using arti_cial neural networks and support vector machine at Rio de Janeiro, Brazil", Atmos. Environ., 98, pp. 98{104 (2014). 16. Brunelli, U., Piazza, V., Pignato, L., et al. Two-days ahead prediction of daily maximum concentrations of SO2, O3, PM10, NO2, CO in the urban area of Palermo, Italy", Atmos. Environ., 41, pp. 2967{2995 (2007). 17. Boznar, M., Lesjak, M., and Mlakar, P. A neural network-based method for short-term predictions of ambient SO2 concentrations in highly polluted industrial areas of complex terrain", Atmos. Environ., 27B(2), pp. 221{230 (1993). 18. Perez, P. and Reyes, J. Prediction of maximum of 24- h average of PM10 concentrations 30h in advance in Santiago, Chile", Atmos. Environ., 36, pp. 4555{4561 (2002). 1710 Y.S. Sadabadi et al./Scientia Iranica, Transactions E: Industrial Engineering 28 (2021) 1699{1710 19. Jiang, D., Zhang, Y., Hu, X., et al. Progress in developing an ANN model for air pollution index forecast", Atmos. Environ., 38, pp. 7055{7064 (2004). 20. Lu, H.C., Hsieh, J.C., and Chang, T.S. Prediction of daily maximum ozone concentrations from meteorological conditions using a two-stage neural network", Atmos. Res., 81, pp. 124{139 (2006). 21. Paschalidou, A.K., Karakitsios, S., Kleanthous, S., et al. Forecasting hourly PM10 concentration in Cyprus through arti_cial neural networks and multiple regression models: implications to local environmental management", Environ. Sci. Pollut. Res., 18, pp. 316{ 327 (2011). 22. Wang, P., Liu, Y., Qin, Z., et al. A novel hybrid forecasting model for PM10 and SO2 daily concentrations", Sci. Total. Environ., 505, pp. 1202{1212 (2015). 23. Gao, M., Yin, L., and Ning, J. Arti_cial neural network model for ozone concentration estimation and Monte Carlo analysis", Atmos. Environ., 184, pp. 129{ 139 (2018). 24. Siwek, K. and Osowski, S. Improving the accuracy of prediction of PM10 pollution by the wavelet transformation and an ensemble of neural predictors", Eng. Appl. Artif. Intell., 25, pp. 1246{1258 (2012). 25. Bai, Y., Li, Y., Wang, X., et al. Air pollutants concentrations forecasting using back propagation neural network based on wavelet decomposition with meteorological conditions", Atmos. Pollu. Res., 7, pp. 557{566 (2016). 26. Bidokhti, A.A., Shariepour, Z., and Sehatkashani, S. Some resilient aspects of urban areas to air pollution and climate change, case study: Tehran, Iran", Scientia Iranica, A, 23(5), pp. 1994{2004 (2016). 27. http://www.razavimet.ir 28. http://www.scats.com.au 29. http://www.weather.uwyo.edu 30. http://www.raob.com 31. http://www.epmc.mashhad.ir 32. Misiti, M., Misiti, Y., Oppenheim, G., et al., Wavelet Toolbox, MathWorks, Natick (1996). 33. Mallat, S. A theory for multiresolution signal decomposition: The wavelet representation", IEEE Transactions PAMI, 11, pp. 674{693 (1989). 34. User's Guide for the Advanced Research WRF (ARW) Modeling System Version 3.9. Available online: http:// www.mmm.ucar.edu/wrf/users/docs/user guide V3/ contents.html (accessed 2017). 35. Bouloukza, I., Mourad, M., Medoued, A., et al. Multi-objective optimization design and performance evaluation of slotted Halbach PMSM using Monte Carlo method", Scientia Iranica, D, 25(3), pp. 1533{ 1544 (2018). 36. Sarle, W.S. Stopped training and other remedies for over_tting", Proceedings of the 27th Symposium on the Interface of Computer Science and Statistics, pp. 352{ 360 (1995). 37. Kurt, A. and Oktay, A.B. Forecasting air pollutant indicator levels with geographic models 3 days in advance using neural networks", Expert. Syst. with Appl., 37, pp. 7986{7992 (2010). 38. Doma_nska, D. andWojtylak, M. Explorative forecasting of air pollution", Atmos. Environ., 92, pp. 19{30 (2014)