Two Low Computational Complexity Improved Multiband Structured Subband Adaptive Filter Algorithms

Document Type : Article


1 Faculty of Electrical Engineering, Shahid Rajaee Teacher Training University, Tehran, P.O. Box: 16785-163, Iran

2 Department of Electrical Engineering and Computer Science, Faculty of Science and Engineering, University of Stavanger, Norway


The improved multiband-structured subband adaptive filter (IMSAF) applies the input regressors at each subband to speed up the convergence rate of MSAF. When the projection order is increased, the convergence rate of the IMSAF algorithm improves at the cost of increased complexity. The present research introduces two new IMSAF algorithms with low computational complexity feature. In the first algorithm, the selective partial update approach (SPU) is extended to IMSAF algorithms and SPU-IMSAF is established. In SPU-IMSAF, the filter coefficients are partially updated at each subband for every adaptation. In the second algorithm, the set-membership (SM) strategy is utilized in IMSAF and SM-IMSAF is established. The SM-IMSAF has fast convergence rate, low steady-state error and low computational complexity features at the same time. Also, by combining SM and SPU methods, the SM-SPU-IMSAF is introduced. Simulation results demonstrate the good performance of the proposed algorithms.


Main Subjects

1. Widrow, B. and Stearns, D., Adaptive Signal Processing,
Englewood Cli s, NJ Prentice Hall, Inc (1985).
2. Haykin, S.S., Adaptive Filter Theory, Pearson Education
India, 5th Edn. (2013).
3. Sayed, A.H., Adaptive Filters, John Wiley & Sons, Inc.
4. Farhang-Boroujeny, B., Adaptive Filters: Theory and
Applications, John Wiley & Sons, Ltd (2013).
5. Dogancay, K., Partial-Update Adaptive Signal Processing:
Design Analysis and Implementation, Academic
Press (2008).
6. Ozeki, K. and Umeda, T. An adaptive  ltering algorithm
using an orthogonal projection to an ane subspace
and its properties", Electron. Commun. Japan
(Part I Commun.), 67, pp. 19{27 (1984).
7. Lee, K.-A. and Gan, W.-S. Improving convergence
of the NLMS algorithm using constrained subband
updates", IEEE Signal Process. Lett., 11(9), pp. 736{
739 (2004).
8. Abadi, M.S.E. and Danaee, A.-R. Low computational
complexity family of ane projection algorithms over
adaptive distributed incremental networks", AEUInternational
J. Electron. Commun., 68, pp. 97{110
9. Shams Esfand Abadi, M. and Sha ee, M.S. A family
of di usion normalized subband adaptive  lter algorithms
over distributed networks", Int. J. Commun.
Syst., 30, pp. 1{15 (2017).
10. Lee, J.-W., Kim, S.-E., and Song, W.-J. Dataselective
di usion LMS for reducing communication
overhead", Signal Processing, 113, pp. 211{217 (2015).
11. Dogancay, K. and Tanrikulu, O. Adaptive  ltering algorithms
with selective partial updates", IEEE Trans.
Circuits Syst. II Analog Digit. Signal Process., 48(8),
pp. 762{769 (2001).
12. Aboulnasr, T. and Mayyas, K. Complexity reduction
of the NLMS algorithm via selective coecient update",
IEEE Trans. Signal Process., 47(5), pp. 1421{
1424 (1999).
13. Werner, S., De Campos, M.L.R., and Diniz, P.S.R.
Partial-update NLMS algorithms with data-selective
updating", IEEE Trans. Signal Process., 52(4), pp.
938{949 (2004).
14. Abadi, M.S.E., Mehrdad, V., and Gholipour, A. A
family of variable step-size ane projection adaptive
 ltering algorithms with selective regressors and selective
partial updates", Sci. Iran. Trans. D, Comput.
Sci. Eng. Electr., 17, pp. 81{98 (2010).
15. Arablouei, R., Werner, S., Huang, Y.-F., and Dogancay,
K. Distributed least mean-square estimation with
partial di usion", IEEE Trans. Signal Process., 62, pp.
472{484 (2013).
16. Abadi, M.S.E. and Husy, J.H. Selective partial update
and set-membership subband adaptive  lters", Signal
Processing, 88, pp. 2463{2471 (2008).
17. Desiraju, N.K., Doclo, S., and Wol , T. Ecient
multichannel acoustic echo cancellation using constrained
tap selection schemes in the subband domain",
EURASIP J. Adv. Signal Process., 2017, p.
63 (2017).
18. Abadi, M.S.E., Sha ee, M.S., and Zalaghi, M. A
low computational complexity normalized subband
adaptive  lter algorithm employing signed regressor
of input signal", EURASIP J. Adv. Signal Process.,
2018(1), pp. 1{23 (2018).
M. Shams Esfand Abadi et al./Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 3396{3411 3411
19. Cho, J., Baek, H.J., Park, B.Y., and Shin, J. Variable
step-size sign subband adaptive  lter with subband
 lter selection", Signal Processing, 152, pp. 141{147
20. Abadi, M.S.E. and Sha ee, M.S. Di usion normalized
subband adaptive algorithm for distributed estimation
employing signed regressor of input signal", Digit.
Signal Process., 70, pp. 73{83 (2017).
21. Doust, H.A.M. and Shah, T.K. NLMS algorithm with
variable step-size using set-membership identi cation",
Sci. Iran. Trans. D, Comput. Sci. Eng. Electr., 9, pp.
378{384 (2002).
22. Gollamudi, S., Nagaraj, S., Kapoor, S., and Huang,
Y.-F. Set-membership  ltering and a set-membership
normalized LMS algorithm with an adaptive step size",
IEEE Signal Process. Lett., 5, pp. 111{114 (1998).
23. Werner, S. and Diniz, P.S.R. Set-membership ane
projection algorithm", IEEE Signal Process. Lett., 8,
pp. 231{235 (2001).
24. Yang, F., Wu, M., Ji, P., and Yang, J. An improved
multiband-structured subband adaptive  lter
algorithm", IEEE Signal Process. Lett., 19(10), pp.
647{650 (2012).
25. Yang, F., Wu, M., Ji, P., and Yang, J. Low- complexity
implementation of the improved multibandstructured
subband adaptive  lter algorithm", IEEE
Trans. Signal Process., 63(19), pp. 5133{5148 (2015).
26. Yang, F., Wu, M., Ji, P., Kuang, Z., and Yang, J.
Transient and steady-state analyses of the improved
multiband-structured subband adaptive  lter algorithm",
IET Signal Process., 9, pp. 596{604 (2015).
27. Abadi, M.S.E., Husy, J.H., and Ahmadi, M.J. Two
improved multiband structured subband adaptive  lter
algorithms with reduced computational complexity",
Signal Processing, 154, pp. 15{29 (2019).
28. Malvar, H.S., Signal Processing with Lapped Transforms,
Artech House, Inc. (1992).