Model reference adaptive control of a small satellite in the presence of parameter uncertainties

Document Type : Research Note


1 Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Aerospace Engineering, K.N. Toosi University of Technology, Tehran, Iran


An accurate control algorithm for small satellites is critical to the mission's success. In this paper, a novel discrete-time Model Reference Adaptive Control algorithm (MRAC) is developed based on unified approach for attitude control of a three-axis stabilized nonlinear satellite model. The linearized model of satellite with unknown dynamic parameters is derived and Recursive Least Squares (RLS) algorithm is used to identify the linear model’s unknown parameters. In order to take into account the nonlinear model of satellite dynamics, the proposed MRAC strategy is used considering the linear model, the estimation error; and the difference between the actual nonlinear system and the linear model outputs. The actual nonlinear model of satellite includes moments of inertia uncertainties, external disturbances, and sensor noise on the outputs. The introduced controller performance is compared with a conventional discrete -time MRAC which demonstrates excellent simultaneous regulation and tracking capabilities.


Main Subjects

1. _Arz_en, K.-E. A simple event-based PID controller",  14th IFAC World Congress (1999).  2. Psiaki, M.L. Magnetic torquer attitude control via  asymptotic periodic linear quadratic regulation", Journal  of Guidance, Control, and Dynamics, 24(2), pp.  386{394 (2001).  3. Binette, M.R., Damaren, C.J., and Pavel, L. Nonlinear  H1 attitude control using modi_ed Rodrigues  parameters", Journal of Guidance, Control, and Dynamics,  37(6), pp. 2017{2021 (2014).  4. Liu, C., Vukovich, G., Shi, K., and Sun, Z. Robust  fault tolerant nonfragile H1 attitude control for  spacecraft via stochastically intermediate observer",  Advances in Space Research, 62(9), pp. 2631{2648  (2018).  5. Giri, D.K. and Sinha, M. Robust backstepping magnetic  attitude control of satellite subject to unsymmetrical  mass properties", Journal of Spacecraft and  Rockets, 56(1), pp. 298{305 (2019).  6. Mori, K. and Takahashi, M. Minimum-time attitude  maneuver and robust attitude control of small satellite  mounted with communication antenna", AIAA Scitech  K. Ahmadi Dastgerdi et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 2933{2944 2943  2019 Forum, American Institute of Aeronautics and  Astronautics (2019).  7. Lu, K. and Xia, Y. Adaptive attitude tracking control  for rigid spacecraft with _nite-time convergence",  Automatica, 49(12), pp. 3591{3599 (2013).  8. Ioannou, P.A. and Kokotovic, P.V. Instability analysis  and improvement of robustness of adaptive control",  Automatica, 20(5), pp. 583{594 (1984).  9. Rohrs, C., Valavani, L., Athans, M., and Stein,  G. Robustness of continuous-time adaptive control  algorithms in the presence of unmodeled dynamics",  IEEE Transactions on Automatic Control, 30(9), pp.  881{889 (1985).  10. Sastry, S. and Bodson, M., Adaptive Control: Stability,  Convergence and Robustness, Courier Corporation  (2011).  11. Yoon, H. and Tsiotras, P. Adaptive spacecraft attitude  tracking control with actuator uncertainties", The  Journal of the Astronautical Sciences, 56(2), pp. 251{  268 (2008).  12. Kim, D., MacKunis, W., Fitz-Coy, N., and Dixon, W.  Precision Integrated Power and Attitude Control System  (IPACS) in the presence of dynamic uncertainty",  The Journal of the Astronautical Sciences, 58(1), pp.  99{120 (2011).  13. Ioannou, P.A. and Sun, J., Robust Adaptive Control,  Courier Corporation (2012).  14. Jin, X., Zhu, S., Zhu, X., Chen, Q., and Zhang,  X. Single-input adaptive fuzzy sliding mode control  of the lower extremity exoskeleton based on humanrobot  interaction", Advances in Mechanical Engineering,  9(2), pp. 1{9 (2017).  15. Jiao, X. and Jiang, J. Design of adaptive switching  control for hypersonic aircraft", Advances in Mechanical  Engineering, 7(10), pp. 1{10 (2015).  16. Torabi, M., Shari_, M., and Vossoughi, G. Robust  adaptive sliding mode admittance control of exoskeleton  rehabilitation robots", Scientia Iranica, 25(5), pp.  2628{2642 (2018).  17. Sun, R., Wang, J., Zhang, D., and Shao, X. Neuralnetwork-  based sliding-mode adaptive control for spacecraft  formation using aerodynamic forces", Journal of  Guidance, Control, and Dynamics, 41(3), pp. 757{763  (2017).  18. Sun, L. and Zheng, Z. Adaptive sliding mode control  of cooperative spacecraft rendezvous with coupled uncertain  dynamics", Journal of Spacecraft and Rockets,  54(3), pp. 652{661 (2017).  19. Bolandi, H., Haghparast, M., and Abedi, M. A  reliable fault tolerant attitude control system based on  an adaptive fault detection and diagnosis algorithm together  with a backstepping fault recovery controller",  Scientia Iranica, Transaction D, Computer Science &  Engineering, Electrical, 20(6) (2013).  20. Imran, A., Radice, G., and Kim, J. Backstepping control  design with actuator torque bound for spacecraft  attitude maneuver", Journal of Guidance, Control,  and Dynamics, 33(1), pp. 254{259 (2010).  21. Jiang Y., Hu Q., and Ma, G. Adaptive backstepping  fault-tolerant control for exible spacecraft with unknown  bounded disturbances and actuator failures",  ISA Transactions, 49(1), pp. 57{69 (2010).  22. Sun, L. and Huo, W. 6-DOF integrated adaptive  backstepping control for spacecraft proximity operations",  IEEE Transactions on Aerospace and Electronic  Systems, 51(3), pp. 2433{2443 (2015).  23. Cruz, G. and Bernstein D.S. Retrospective cost  adaptive control of spacecraft attitude using magnetic  actuators", Proc. AIAA Guid. Nav. Contr. Conf.,  Boston, MA (2013).  24. Landau, I. and Lozano, R. Uni_cation of discrete time  explicit model reference adaptive control designs",  Automatica, 17(4), pp. 593{611 (1981).  25. Saberi, F.F., Dastgerdi, S.A., and Zandieh, M. Uni-  _ed model reference adaptive attitude control of a  satellite in presence of uncertain parameters: Design  and implementation", International Journal of Computer  Applications, 121(12), pp. 25{32 (2015).  26. Wie, B., Space Vehicle Dynamics and Control, AIAA  (1998).  27. Sidi, M.J., Spacecraft Dynamics and Control: A  Practical Engineering Approach, Cambridge University  Press (1997).  28. Chalam, V., Adaptive Control Systems: Techniques  and Applications, Marcel Dekker, Inc. (1987).  29. Popov, V.-M., Hyperstability of Control Systems,  Springer-Verlag Berlin Heidelberg (1973).