Fatigue and fracture behavior of A516 steel used in thick-walled pressure vessels

Document Type : Article


1 Department of Mechanical Engineering, Foolad Institute of Technology, Fooladshahr, Isfahan, 84916-63763, Iran

2 Department of Mechanical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

3 Faculty of Engineering, Shahrekord University, Shahrekord, Iran


In this paper, the growth of semi elliptical crack in the walls of thick walled cylindrical pressure vessels has been investigated. Considering the importance of the crack growth problem in cylindrical pressure vessels provides a numerical and experimental 3D model for the growth of fatigue crack and estimating the fatigue life of pressure vessels. Because of available geometric geometric and physical parameters, it can be predicted the problem of the fatigue life of these pressure vessels more precisely in comparison with existing standard tests which are experimental and numerical. A most common specimen of thick walled tanks, steel, is analyzed for conducting experimental tests. The mechanical properties and fatigue behavior of A516 steel have been determined experimentally. For estimating the crack growth and calculation of fatigue life, boundary element method and linear fracture mechanics equations have been used. Finally, the experimental results for fatigue crack growth were compared with numerical method, which yielded acceptable results. The overall results show a good agreement between the experimental data and the numerical results.


Main Subjects

1. Rickerby, D.G. and Fenici, P. Simultaneous light  ion irradiation and fatigue experiment for the Ispra  cyclotron", Journal of Nuclear Materials, 104, pp.  1577{1581 (1981).  2. Mackerle, J. Finite elements in the analysis of pressure  vessels and piping, an addendum: A bibliography  (2001{2004)", International Journal of Pressure Vessels  and Piping, 82(7), pp. 571{592 (2005).  3. Masoudi Nejad, R. Rolling contact fatigue analysis  under inuence of residual stresses", MS Thesis, Sharif  University of Technology, School of Mechanical Engineering  (2013).  4. Masoudi Nejad, R., Salehi, S.M., and Farrahi, G.H.  Simulation of railroad crack growth life under the  inuence of combination mechanical contact and thermal  loads", in 3rd International Conference on Recent  Advances in Railway Engineering, Iran (2013).  5. Masoudi Nejad, R., Salehi, S.M., Farrahi, G.H., and  Chamani, M. Simulation of crack propagation of  fatigue in Iran rail road wheels and e_ect of residual  stresses", In: Proceedings of the 21st International  Conference on Mechanical Engineering, Iran (2013).  6. Salehi, S.M., Farrahi, G.H., Sohrabpoor, S., and  Masoudi Nejad, R. Life estimation in the railway  wheels under the inuence of residual stress _eld",  International Journal of Railway Research, 1(1), pp.  53{60 (2014).  7. Hadipour, M., Alambeigi, F., Hosseini, R., and Masoudinejad,  R. A study on the vibrational e_ects of  adding an auxiliary chassis to a 6-ton truck", Journal  of American Science, 7(6), pp. 1219{1226 (2011).  8. Aliakbari, K., Imanparast, M., and Masoudi Nejad, R.  Microstructure and fatigue fracture mechanism for a  heavy-duty truck diesel engine crankshaft", Scientia  Iranica, 26(6), pp. 3313{3324 (2019).  9. Masoudi Nejad, R., Shariati, M., Farhangdoost, Kh.,  and Atrian, A. Rolling contact fatigue analysis of  rails under the inuence of residual stresses induced  by manufacturing", Scientia Iranica, 26(3), pp. 1427{  1437 (2019).  10. Masoudi Nejad, R., Farhangdoost, Kh., Shariati, M.,  and Moavenian, M. Stress intensity factors evaluation  for rolling contact fatigue cracks in rails", Tribology  Transactions, 60(4), pp. 645{652 (2016).  11. Ghahremani Moghadam, D., Farhangdoost, Kh., and  Masoudi Nejad, R. Microstructure and residual stress  distributions under the inuence of welding speed in  friction stir welded 2024 aluminum alloy", Metallurgical  and Materials Transactions B, 47(3), pp. 2048{  2062 (2016).  12. Masoudi Nejad, R., Farhangdoost, Kh., and Shariati,  M. Numerical study on fatigue crack growth in railway  wheels under the inuence of residual stresses",  Engineering Failure Analysis, 52, pp. 75{89 (2015).  13. Masoudi Nejad, R., Farhangdoost, Kh., and Shariati,  M. Three-dimensional simulation of rolling contact  fatigue crack growth in UIC60 rails", Tribology Transactions,  59(6), pp. 1059{1069 (2016).  14. Shariati, M. and Masoudi Nejad, R. Fatigue strength  and fatigue fracture mechanism for spot welds in Ushape  specimens", Latin American Journal of Solids  and Structures, 13(15), pp. 2787{2801 (2016).  H. Ghasemi et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 2902{2914 2913  15. Masoudi Nejad, R., Shariati, M., and Farhangdoost,  Kh. E_ect of wear on rolling contact fatigue crack  growth in rails", Tribology International, 94, pp. 118{  125 (2016).  16. Boresi, A.P., Chong, K., and Lee, J.D., Elasticity in  Engineering Mechanics, Second Ed., John Wiley &  Sons (2010).  17. Thurlbeck, S.D. A fracture mechanics based methodology  for the assessment of weld toe cracks in tubular  o_shore joints", Ph.D. Thesis, University of Manchester,  Institute of Science and Technology (1991).  18. Zheng, X.J., Kiciak, A., and Glinka, G. Weight  functions and stress intensity factors for internal surface  semi-elliptical crack in thick-walled cylinder",  Engineering Fracture Mechanics, 58(3), pp. 207{221  (1997).  19. Anderson, T.L. Fracture mechanics-fundamentals  and applications", NASA STI/Recon Technical Report  (1991).  20. Newman, J.C. and Raju, I.S. Stress-intensity factors  for internal surface cracks in cylindrical pressure vessels",  Journal of Pressure Vessel Technology, 102(4),  pp. 342{346 (1980).  21. Perl, M. and Levinsohn, J.A. Measurement of the  actual fracture toughness of a maraging 300 pressurized  cylinder using the vessel as the test specimen",  Engineering Fracture Mechanics, 34(2), pp. 525{530  (1989).  22. Newman, J.C. Fracture analysis of various cracked  con_gurations in sheet and plate materials", In Properties  Related to Fracture Toughness, ASTM International,  605(1), pp. 104{123 (1976).  23. Masoudi Nejad, R. Using three-dimensional _nite  element analysis for simulation of residual stresses in  railway wheels", Engineering Failure Analysis, 45, pp.  449{455 (2014).  24. Masoudi Nejad, R., Shariati, M., and Farhangdoost,  Kh. 3D _nite element simulation of residual stresses  in UIC60 rails during the quenching process", Thermal  Science, 21(3), pp. 1301{1307 (2017).  25. Silva, A.L.L., Jesus, D., Xavier, A.M.P, Correia Jos_e,  A.F.O., and Fernandes, A. Combined analyticalnumerical  methodologies for the evaluation of mixedmode  (I+II) fatigue crack growth rates in structural  steels", Engineering Fracture Mechanics, 185, pp. 124{  138 (2017).  26. Rozumek, D., Marciniak, Z., Lesiuk, G., Correia,  J.A., and de Jesus, A.M. Experimental and numerical  investigation of mixed mode I+ II and I+ III fatigue  crack growth in S355J0 steel", International Journal  of Fatigue, 113, pp. 160{170 (2018).  27. Lesiuk, G., Kucharski, P., Correia, J.A., De Jesus,  A.M.P., Rebelo, C., and da Silva, L.S. Mixed mode  (I+ II) fatigue crack growth in puddle iron", Engineering  Fracture Mechanics, 185, pp. 175{192 (2017).  28. Correia Jos_e, A.F.O., Abilio, M.P., and Fern_andez-  Canteli, A. A procedure to derive probabilistic fatigue  crack propagation data", International Journal of  Structural Integrity, 3(2), pp. 158{183 (2012).  29. Ab__lio, M.P. and Correia Jos_e, A.F.O. Critical assessment  of a local strain-based fatigue crack growth model  using experimental data available for the P355NL1  steel", Journal of Pressure Vessel Technology, 135(1),  pp. 11{40 (2013).  30. Correia Jos_e, A.F.O., Ab__lio, M.P., and Fern_andez-  Canteli, A. Local uni_ed probabilistic model for  fatigue crack initiation and propagation: application  to a notched geometry", Engineering Structures, 52,  pp. 394{407 (2013).  31. Correia Jos_e, A.F.O., Hu_man, P.J., Ab__lio, M.P.,  Cicero, S., Fern_andez-Canteli, A., Berto, F., and  Glinka, G. Uni_ed two-stage fatigue methodology  based on a probabilistic damage model applied to  structural details", Theoretical and Applied Fracture  Mechanics, 92, pp. 252{265 (2017).  32. Correia Jos_e, A.F.O., Ab__lio, M.P., Moreira, P.M.,  and Tavares, P.J. Crack closure e_ects on fatigue  crack propagation rates: application of a proposed  theoretical model", Advances in Materials Science and  Engineering, 2016, pp. 13{24 (2016).  33. Correia Jos_e, A.F.O, Blas_on, S., Arcari, A., Calvente,  M., Apetre, N., Moreira, P.M.G.P., De Jesus,  A.M.P., and Canteli, A.F. Modi_ed CCS fatigue  crack growth model for the AA2019-T851 based on  plasticity-induced crack-closure", Theoretical and Applied  Fracture Mechanics, 85, pp. 26{36 (2016).  34. ASTM E8, Standard Test Methods for Tension Testing  of Metallic Materials (2012).  35. Masoudi Nejad, R. Three-dimensional analysis of  rolling contact fatigue crack and life prediction in  railway wheels and rails under residual stresses and  wear", Ph. D. Thesis, Ferdowsi University of Mashhad,  School of Mechanical Engineering (2017).  36. Masoudi Nejad, R., Farhangdoost, Kh., and Shariati,  M. Microstructural analysis and fatigue fracture behavior  of rail steel", Mechanics of Advanced Materials  and Structures, 27(2), pp. 152{164 (2020).  37. ASTM E23, Standard Test Methods for Notched Bar  Impact Testing of Metallic Materials (2012).  38. ASTM E10-10, Standard Test Methods for Brinell  hardness of Metallic Materials (2012).  39. ASTM E466-07, Standard Practice for Conducting  Force Controlled Constant Amplitude Axial Fatigue  Tests of Metallic Materials (2012).  40. Shariati, M., Mirzaei, M., and Masoudi Nejad, R.  An applied method for fatigue life assessment of  engineering components using rigid-insert crack closure  model", Engineering Fracture Mechanics, 204, pp.  421{433 (2018).  2914 H. Ghasemi et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 2902{2914  41. Masoudi Nejad, R., Shariati, M., and Farhangdoost,  Kh. Prediction of fatigue crack propagation and  fractography of rail steel", Theoretical and Applied  Fracture Mechanics, 101, pp. 320{331 (2019).  42. ASTM E647-11, Standard Test Method for Measurement  of Fatigue Crack Growth Rates (2011).  43. Shariati, M., Mohammadi, E., and Masoudi Nejad,  R. E_ect of a new specimen size on fatigue crack  growth behavior in thick-walled pressure vessels", International  Journal of Pressure Vessels and Piping,  150, pp. 1{10 (2017).  44. ASTM designation E-399-83, Standard Method of Test  for Plane-Strain Fracture Toughness of Metallic Materials,  ASTM Annual Standards, 03.01 (2011).  45. Anderson, T.L., Fracture Mechanics: Fundamentals  and Applications, Second Ed., CRC press (2017).  46. Cornell Fracture Group, Accessed 15 March (2016).  http://www.cfg.cornell.edu