Performance evaluation of aluminium oxide nano particles in cutting fluid with minimum quantity lubrication technique in turning of hardened AISI 4340 alloy steel

Document Type : Article

Authors

1 Department of Industrial Design, National Institute of Technology, Rourkela 769008, Odisha, India

2 Department of Mechanical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India

3 Department of Production Engineering, Veer Surendra Sai University of Technology, Burla 768018, Odisha, India

Abstract

The current research comprises various machinability aspects of 4340 hardened alloy steel which are scrutinized with in context of improvements in main cutting force, tool flank wear, crater wear, surface roughness, microhardness, machined surface morphology, chip morphology, chip reduction coefficient and apparent coefficient of friction under three different cutting fluid applications i.e. compressed air, water soluble coolant based MQL, and nanofluid (using eco-friendly radiator coolant as the base fluid and Al2O3 as the nanoparticle) based MQL technique using cermet cutting inserts and a comparative assessment was performed to select which fluid performed better in terms of various machining attributes among three cutting fluids. The minimum quantity lubrication technique was used in which a smaller volume of coolant sprinkled at high pressure. This method is found as the most effective alternative to minimize health risks and machining costs, which is quite high in other setups. The test specimen was machined at three different cutting speeds i.e. 100,120 and 140m/min along with two machining parameters i.e. feed and depth of cut were kept constant respectively at 0.2mm/rev and 0.4mm. Outcomes made a conclusion that Al2O3 enriched ecofriendly nano-coolant outperformed both compressed air and water soluble coolant in terms of every machinability aspects.

Keywords

Main Subjects


1. Rao, R.V. and Kalyankar, V.D. Multi-pass turning  process parameter optimization using teachinglearning-  based optimization algorithm", Scientia Iranica,  E, 20(3), pp. 967{974 (2013).  2. Shen, B., Shih, A.J., and Tung, S.C. Application of  nanouids in minimum quantity lubrication grinding",  Tribology Transactions, 51(6), pp. 730{737 (2008).  A. Das et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 2838{2852 2851  3. Hegab, H., Umer, U., Soliman, M., and Kishawy, H.A.  E_ects of nano-cutting uids on tool performance  and chip morphology during machining Inconel 718",  The International Journal of Advanced Manufacturing  Technology, 96(9{12), pp. 3449{3458 (2018).  4. Kuzu, A.T., Bijanzad, A., and Bakkal, M. Experimental  investigations of machinability in the turning of  compacted graphite iron using minimum quantity lubrication",  Machining Science and Technology, 19(4),  pp. 559{576 (2015).  5. Amini, S., Khakbaz, H., and Barani, A. Improvement  of near-dry machining and its e_ect on tool wear in  turning of AISI 4142", Materials and Manufacturing  Processes, 30(2), pp. 241{247 (2014).  6. Kumar, R., Sahoo, A.K., Mishra, P.C., and Das,  R.K. Measurement and machinability study under  environmentally conscious spray impingement cooling  assisted machining", Measurement, 135, pp. 913{927  (2019).  7. Mia, M., Gupta, M.K., Singh, G., Kr_olczyk, G., and  Pimenov, D.Y. An approach to cleaner production  for machining hardened steel using di_erent coolinglubrication  conditions", Journal of Cleaner Production,  187, pp. 1069{1081 (2018).  8. Mia, M., Rifat, A., Tanvir, M.F., Gupta, M.K.,  Hossain, M.J., and Goswami, A. Multi-objective  optimization of chip-tool interaction parameters using  Grey-Taguchi method in MQL-assisted turning", Measurement,  129, pp. 156{166 (2018).  9. Mia, M., Morshed, M.S., Kharshiduzzaman, M., Razi,  M.H., Mostafa, M.R., Rahman, S.M.S., Ahmada, I.,  Ha_z, M.T., and Kamal, A.M. Prediction and optimization  of surface roughness in minimum quantity  coolant lubrication applied turning of high hardness  steel", Measurement, 118, pp. 43{51 (2018).  10. Nemati, H., Farhadi, M., Sedighi, K., Ashorynejad,  H.R., and Fattahi, E. Magnetic _eld e_ects on natural  convection ow of nanouid in a rectangular cavity  using the lattice Boltzmann model", Scientia Iranica,  19(2), pp. 303{310 (2012).  11. Amrita, M., Srikant, R.R., and Sitaramaraju, A.V.  Performance evaluation of nanographite-based cutting  uid in machining process", Materials and Manufacturing  Processes, 29(5), pp. 600{605 (2014).  12. Sharma, A.K., Tiwari, A.K., and Dixit, A.R. Progress  of nanouid application in machining: A review",  Materials and Manufacturing Processes, 30(7), pp.  813{828 (2014).  13. Sharma, P., Sidhu, B.S., and Sharma, J. Investigation  of e_ects of nanouids on turning of AISI D2 steel using  minimum quantity lubrication", Journal of Cleaner  Production, 108, pp. 72{79 (2015).  14. Su, Y., Gong, L., Li, B., Liu, Z., and Chen, D. Performance  evaluation of nanouid MQL with vegetablebased  oil and ester oil as base uids in turning",  The International Journal of Advanced Manufacturing  Technology, 83(9{12), pp. 2083{2089 (2015).  15. Patole, P.B. and Kulkarni, V.V. Experimental investigation  and optimization of cutting parameters with  multi response characteristics in MQL turning of AISI  4340 using nano uid", Cogent Engineering, 4(1), pp.  1{14 (2017).  16. Khajehzadeh, M., Moradpour, J., and Razfar, M.R.  Inuence of nanouids application on contact length  during hard turning", Materials and Manufacturing  Processes, 34(1), pp. 30{38 (2019).  17. Amrita, M., Shariq, S.A., Manoj, and Gopal, C. Experimental  investigation on application of emulsi_er oil  based nano cutting uids in metal cutting process",  Procedia Engineering, 97, pp. 115{124 (2014).  18. Sharma, A.K., Singh, R.K., Dixit, A.R., and Tiwari,  A.K. Novel uses of alumina-MoS2 hybrid nanoparticle  enriched cutting uid in hard turning of AISI 304  steel", Journal of Manufacturing Processes, 30, pp.  467{482 (2017).  19. Singh, R.K., Sharma, A.K., Dixit, A.R., Tiwari,  A.K., Pramanik, A., and Mandal, A. Performance  evaluation of alumina-graphene hybrid nano-cutting  uid in hard turning", Journal of Cleaner Production,  162, pp. 830{845 (2017).  20. Kumar, R., Sahoo, A.K., Mishra, P.C., and Das, R.K.  Comparative investigation towards machinability improvement  in hard turning using coated and uncoated  carbide inserts: Part I: Experimental investigation",  Advances in Manufacturing, 6(1), pp. 52{70 (2018).  21. Rahmati, B., Sarhan, A.A.D., and Sayuti, M. Investigating  the optimum molybdenum disul_de (MoS2)  nanolubrication parameters in CNC milling of AL6061-  T6 alloy", The International Journal of Advanced  Manufacturing Technology, 70(5{8), pp. 1143{1155  (2013).  22. Saravanakumar, N., Prabu, L., Karthik, M., and  Rajamanickam, A. Experimental analysis on cutting  uid dispersed with silver nano particles", Journal of  Mechanical Science and Technology, 28(2), pp. 645{  651 (2014).  23. Das, S.R., Panda, A., and Dhupal, D. Experimental  investigation of surface roughness, ank wear, chip  morphology and cost estimation during machining of  hardened AISI 4340 steel with coated carbide insert",  Mechanics of Advanced Materials and Modern Processes,  3(1), pp. 1{14 (2017).  24. Khalilpourazary, S. and Meshkat, S.S. Investigation  of the e_ects of alumina nanoparticles on spur gear surface  roughness and hob tool wear in hobbing process",  The International Journal of Advanced Manufacturing  Technology, 71(9{12), pp. 1599{1610 (2014).