References:
[1] Jafari, A., Zamankhan, P., Mousavi, S.M. et al. "Numerical investigation of blood flow. Part II: In capillaries", Commun. in Nonlinear Sci. and Numer. Simul., 14(4), pp. 1396-1402 (2009).
[2] Goerke, A.R., Leung, J. and Wickramasinghe, S.R. "Mass and momentum transfer in blood oxygenators", Chem. Engng. Sci., 57, pp. 2035-2046 (2002).
[3] Wernert, V., Schäf, O., Ghobarkar, H. et al. "Adsorption properties of zeolites for artificial kidney applications", Microporous and Mesoporous Materials, 83(1-3), pp. 101-113 (2005).
[4] Mneina, S.S. and Martens, G.O. "Linear phase matched filter design with causal real symmetric impulse response", AEU-Int. J. of Elect. and Commun., 63(2), pp. 83-91 (2009).
[5] Runstedtler, A. "On the modified Stefan–Maxwell equation for isothermal multicomponent gaseous diffusion", Chem. Engng. Sci., 61(15), pp. 5021-5029 (2006).
[6] Andoh, Y.H. and Lips, B. "Prediction of porous walls thermal protection by effusion or transpiration cooling. An analytical approach", Appl. Therm. Engng., 23(15), 1974-1958 (2003).
[7] Berman, A.S. "Laminar flow in channels with porous walls", J. of Appl. Phys., 24(9), pp. 1232-1235 (1953).
[8] Shekholeslami, M., Ashorynejad, H.R., Domairry, D. et al. "Investigation of the laminar viscous flow in a semi-porous channel in the presence of uniform magnetic field using optimal homotopy asymptotic method", Sains Malaysiana, 41(10), pp. 1281-1285 (2012).
[9] Choi, S.U.S., Zhang, Z.G., Yu, W. et al. "Anomalous thermal conductivity enhancement in nanotube suspensions", Appl. Phys. Lett., 79(14), pp. 2252 (2001).
[10] Choi, S.U.S. and Eastman, J.A. "Enhancing thermal conductivity of fluids with nanoparticles", The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, ASME, San Francisco, USA, FED 231/MD 66, pp. 99-105 (1995).
[11] Goharkhah, M. and Ashjaee, M. "Effect of an alternating nonuniform magnetic field on ferrofluid flow and heat transfer in a channel", J. of Mag. and Magn. Mat., 362, pp. 80-89 (2014).
[12] Abbas, Z. and Hasnain, J. "Two-phase magnetoconvection flow of magnetite (Fe3O4) nanoparticles in a horizontal composite porous annulus", Results in Physics, 7, pp. 574-580 (2017).
[13] M. Ghasemian, Z. Najafian Ashrafi, M. Goharkhah, M. Ashjaee, Heat transfer characteristics of Fe3O4 ferrofluid flowing in a mini channel under constant and alternating magnetic fields, Journal of Magnetism and Magnetic Materials, 381 (2015) 158-167.
[14] Sheikholeslami, M.,Ganji, D.D. and Rashidi, M.M. "Ferrofluid flow and heat transfer in a semi annulus enclosure in the presence of magnetic source considering thermal radiation", J. of the Taiwan Inst. of Chem. Eng., 47 (2015) 6-17.
[15] Soleimani, S., Sheikholeslami, M., Ganji, D.D. et al. "Natural convection heat transfer in a nanofluid filled semi-annulus enclosure", Int. Commun. in Heat and Mass Trans., 39(4), pp. 565-574 (2012).
[16] Sheremet, M.A., Trîmbiţaş, R., Groşan, T. et al. "Natural convection of an alumina-water nanofluid inside an inclined wavy-walled cavity with a non-uniform heating using Tiwari and Das’ nanofluid model", Appl. Math. and Mech., 39(10), pp. 1425-1436 (2018).
[17] Siddiqui, A.A. and Sheikholeslami, M. "TiO2-water nanofluid in a porous channel under the effects of an inclined magnetic field and variable thermal conductivity", Appl. Math. and Mech., 39(8), pp. 1201-1216 (2018).
[18] Wakif, A., Boulahia, Z. and Sehaqui, R. "Numerical study of the onset of convection in a newtonian nanofluid layer with spatially uniform and non uniform internal heating", J. of Nanofluids, 6(1), pp136-148 (2017).
[19] Wakif, A., Boulahia, Z. and Sehaqui, R. "Numerical analysis of the onset of longitudinal convective rolls in a porous medium saturated by an electrically conducting nanofluid in the presence of an external magnetic field, Results in Physics, 7 (2017) 2134-2152.
[20] Wakif, A., Boulahia, Z. Ali, F. et al. "Numerical analysis of the unsteady natural convection mhd couette nanofluid flow in the presence of thermal radiation using single and two-phase nanofluid models for cu–water nanofluids", Int. J. of Appl. and Comput. Math., 4(3) (2018).
[21] Wakif, A., Boulahia, Z. and Sehaqui, R. "A semi-analytical analysis of electro-thermo-hydrodynamic stability in dielectric nanofluids using Buongiorno’s mathematical model together with more realistic boundary conditions", Res. in Phys., 9, pp. 1438-1454 (2018).
[22] Wakif, A., Boulahia, Z., Mishra, S.R. "Influence of a uniform transverse magnetic field on the thermo-hydrodynamic stability in water-based nanofluids with metallic nanoparticles using the generalized Buongiorno’s mathematical model", The Europ. Phys. J. Plus, 133(5), (2018).
[23] Wakif, A., Boulahia, Z., Amine, A. et al. "Magneto-convection of alumina-water nanofluid within thin horizontal layers using the revised generalized buongiorno's model", Front. in Heat and Mass Trans., 12(0), (2018).
[24] Garoosi, F., Hoseininejad, F. and Rashidi, M.M. "Numerical study of natural convection heat transfer in a heat exchanger filled with nanofluids", Energy, 109, pp. 664-678 (2016).
[25] Abbas, T., Ayub, M., Bhatti, M. et al. "Entropy generation on nanofluid flow through a horizontal riga plate", Entropy, 18(6), doi:10.3390/e18060223 (2016).
[26] Mohebbi, R. and Rashidi, M.M. "Numerical simulation of natural convection heat transfer of a nanofluid in an L-shaped enclosure with a heating obstacle", J. of the Taiwan Inst. of Chem. Eng., 72, pp.70-84 (2017).
[27] Bashirnezhad, K., Rashidi, M.M., Yang, Z. et al. "A comprehensive review of last experimental studies on thermal conductivity of nanofluids", J. of Ther. Anal. and Calor., 122(2), pp. 863-884 (2015).
[28] Jha, B.K. and Aina, B. "Magnetohydrodynamic natural convection flow in a vertical micro-porous-annulus in the presence of radial magnetic field", J. of Nanofluids, 5(2), pp. 292-301 (2016).
[29] Jha, B.K. and Aina, B. "Role of suction/injection on steady fully developed mixed convection flow in a vertical parallel plate microchannel", Ain Shams Engng. J., 9(4), pp.747-755 (2016).
[30] Sheikholeslami, M., Hatami, M. and Ganji, D.D. "Analytical investigation of MHD nanofluid flow in a semi-porous channel", Powd. Tech., 246, pp. 327-336 (2013).
[31] Stern, R.H. and Rasmussen, H. "Left ventricular ejection: model solution by collocation, an approximate analytical method", Comp. in Bio. and Medi., 26, pp. 255-261 (1996).
[32] Vaferi, B., Salimi, V., Baniani, D.D. et al. "Prediction of transient pressure response in the petroleum reservoirs using orthogonal collocation", J. of Petrol. Sci. and Engng., 98-99, pp. 156-163 (2012).
[33] Aziz, A. and Bouaziz, M.N. "A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity", Ener. Conver. and Manag., 52(8-9), pp. 2876-2882 (2011).
[34] Bouaziz, M.N. and Aziz, A. "Simple and accurate solution for convective–radiative fin with temperature dependent thermal conductivity using double optimal linearization", Ener. Conver. and Manag., 51(12), pp. 2776-2782 (2010).
[35] Abbas, Z., Rahim, T. and Hasnain, J. "Slip flow of magnetite-water nanomaterial in an inclined channel with thermal radiation", Int. J. of Mech. Sci., 122, pp. 288-296 (2017).
[36] Ashmawy, E.A. "Fully developed natural convective micropolar fluid flow in a vertical channel with slip", J. of the Egyp. Mathe. Soc., 23(3), pp. 563-567 (2015).
[37] Abbas, Z., Hasnain, J. and Sajid, M. "MHD two-phase fluid flow and heat transfer with partial slip", Thermal Science, 20, pp.1435-1446 (2016).
[38] Sanyal, D.C. and Sanyal, M.K. "Hydromagnetic slip flow with heat transfer in an inclined channel", Czech. J. of Phys. B, 39, pp. 529-536 (1989).
[39] Finlayson, B.A. and Scriven, L.E. "The method of weighted residuals-A Reviews", Appl. Mech. Reviews, 19, pp. 735-748 (1966).