Analysis of the effect of temperature on the morphology of egg shell calcium oxide catalyst: Catalyst production for biodiesel preparation

Document Type : Article


Department of Mechanical Engineering, National Institute of Technology Manipur, Imphal-795004, India


The increase study on the usage of egg shell derived CaO being used as catalyst during biodiesel production have paved way for the need to study the effects of temperature on the calcination of egg shells. Therefore, the authors in the present study have undertaken calcination of chicken egg shells and duck egg shells at various temperatures of 800 °C, 900 °C and 1000 °C exposed at one hour. The synthesized CaO were characterised using X-ray diffraction (XRD), Fourier transform infra-red spectrometry (FT-IR), Scanning electron microscope (SEM) and Energy Dispersive X-ray analysis (EDX). The study have shown that there is changes in the distribution and formation of calcium, oxides and naturally occurring substance carbon, during calcination of the samples. It was observed in both the cases of chicken as well as duck egg shells that 800 °C is a decent temperature for calcinating the egg shells in producing calcium oxide catalyst.


Main Subjects

1. Singh, T.S., Verma, T.N., Nashine, P., and Shijagurumayum,  C. BS-III diesel vehicles in imphal,  India: An emission perspective", In: Sharma N.,  Agarwal A., Eastwood P., Gupta T., Singh A.  Eds. Air Pollution and Control Energy, Environment,  and Sustainability, Springer, Singapore (2018).  2. Rajak, U. and Verma, T.N. E_ect of emission from  ethylic biodiesel of edible and non-edible vegetable  oil, animal fats, waste oil and alcohol in CI engine",  Energy Convers Manag, 166, pp. 704{718 (2018). DOI:  10.1016/j.enconman.2018.04.070  3. Hurdogan, E., Ozalp, C., Kara, O., et al. Experimental  investigation on performance and emission  characteristics of waste tire pyrolysis oildiesel  blends in a diesel engine", Int. J Hydrogen  Energy, 2(36), pp. 23373{23378 (2017). DOI:  10.1016/j.ijhydene.2016.12.126  4. Devaraj, J., Robinson, Y., and Ganapathi, P. Experimental  investigation of performance, emission and  combustion characteristics of waste plastic pyrolysis  oil blended with diethyl ether used as fuel for  diesel engine", Energy, 85, pp. 304{309 (2015). DOI:  10.1016/  5. Adewale, P., Vithanage, L.N., and Christopher, L.  Optimization of enzyme-catalyzed biodiesel production  from crude tall oil using Taguchi method", Energy  Convers. Manag, 154, pp. 81{91 (2017).  6. Singh, T.S. and Verma, T.N. Impact of tri-fuel  on compression ignition engine emissions: blends of  waste frying oil-alcohol-diesel", In: Agarwal A.,  Gautam A., Sharma N., Singh A., Eds. Methanol  and the Alternate Fuel Economy, Energy, Environment,  and Sustainability, Springer, Singapore (2019).  7. Garcia, M.C.C., Sanchez, M.D.M., Miron, A.S.,  et al. A process for biodiesel production involving  the heterotrophic fermentation of Chlorella protothecoides  with glycerol as the carbon source",  Appl Energy, 103, pp. 341{349 (2013). DOI:  10.1016/j.apenergy.2012.09.054  8. Rajak, U. and Verma, T.N. Spirulina microalgae  biodiesel-A novel renewable alternative energy source  for compression ignition engine", J Clean Prod, 201,  pp. 343{357 (2018). Doi: 10.1016/j.jclepro.2018.08.057  9. Vassilev, S.V. and Vassileva, C.G. Composition,  properties and challenges of algae biomass for biofuel  application: An overview", Fuel, 181, pp. 1{33 (2016).  DOI: 10.1016/j.fuel.2016.04.106  10. Rajak, U., Nashine, P., and Verma, T.N. Assessment  of diesel engine performance using spirulina microalgae  biodiesel", Energy, 166, pp. 1025{1036 (2018).  11. Salam, S. and Verma, T.N. Appending empirical  modelling to numerical solution for behaviour characterisation  of microalgae biodiesel", Energy Convers.  Manag., 180, pp. 496{510 (2019).  12. Rajak, U., Nashine, P., and Verma, T.N. A comparative  analysis of engine characteristics from various  biodiesels: Numerical study", Energy Convers.  Manag., 180, pp. 904{923 (2019).  13. Buasri, A., Worawanitchaphong, P., and Trongyong,  S. Utilization of scallop waste shell for biodiesel  production from palm oil-optimization using taguchi  method", Procedia-Soc. Behav. Sci., 8, pp. 216{221  (2014). DOI: 10.1016/j.apcbee.2014.03.030  14. Tan, Y.H., Abdullah, M.O., Nolasco-hipolito, C., et  al. Application of RSM and Taguchi methods for  optimizing the transesteri_cation of waste cooking oil  catalyzed by solid ostrich and chicken-eggshell derived  CaO", Renew. Energy, 114(B), pp. 437{447 (2017).  15. Latchubugata, C.S., Kondapaneni, R.V., Patluri,  K.K., et al. Kinetics and optimization studies using  response surface methodology in biodiesel production  using Heterogeneous catalyst", Chem. Eng. Res. Des.,  135, pp. 129{139 (2018).  2922 T.S. Singh and T.N. Verma/Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 2915{2923  16. Niju, S., Begum, K.M.M.S., and Anantharaman, N.  Modi_cation of egg shell and its application in  biodiesel production", J. Saudi Chem. Soc., 18(5), pp.  702{706 (2014).  17. Kaewdaeng, S., Sintuya, P., and Nirunsin, R.  Biodiesel production using calcium oxide from river  snail shell ash as catalyst", Energy Procedia, 138, pp.  937{942 (2017).  18. Vahabzadeh, F., Hajar, M., and Shokrollahzadeh, S.  Empirical modeling of the enzymatic methanolysis of  canola oil", Sci. Iran., 17(1), pp. 97{105 (2010).  19. Ghahremani, A., Jafari, M., Ahari, M., et al. Experimental  and theoretical investigation on spray characteristics  of bio-ethanol blends using a direct injection  system", Sci. Iran., 24(1), pp. 237{248 (2017).  20. Komeili, S., Takht Ravanchi, M., and Taeb, A. In-  uence of calcination parameters on the properties of  alumina as a catalyst support", Sci. Iran., 23(3), pp.  1128{1135 (2016).  21. Salabat, A. and Keshavarz, A. E_ect of HCl on the  structure and catalytic activity of Pt/Al2O3 nanocatalyst  prepared in microemulsion system", Sci. Iran,  26(3), pp. 1925{1930 (2019).  22. Azizi, N., Ebrahimi, F., and Saidi, M.R. Highly  e_cient one-pot three-component mannich reaction  under solvent-free conditions", Organic Letters, 16(2),  pp. 94{98 (2009).  23. Kouchak Yazdi, Z., Alemzadeh, I., and Vossoughi, M.  Comparison and optimization of conjugated linoleic  acid production by Lactobacillus plantarum and Lactobacillus  plantarum subsp. Plantarum", Sci. Iran.,  24(3), pp. 1272{1280 (2017).  24. Abu Bakar, W.A.W., Ali, R., Sulaiman, N., et al.  Manganese oxide doped noble metals supported catalyst  for carbon dioxide methanation reaction", Sci.  Iran, Trans. C-Chemistry Chem. Eng., 17(2), pp. 115{  123 (2010).  25. Daemi, H., Rad, R.R., Adib, M., et al. Sodium  alginate: A renewable and very e_ective biopolymer  catalyst for the synthesis of 3,4-dihydropyrimidin-  2(1H)-ones", Sci. Iran., 21(6), pp. 2076{2081 (2014).  26. Najai, M., Abbasi, A., and Masteri-Farahani, M.  Preparation of MoO3/CuMoO4 nanoparticles as selective  catalyst for ole_n epoxidation", Sci. Iran.,  24(3), pp. 1203{1208 (2017).  27. Zarezadeh-Mehrizi, M., Afshar Ebrahimi, A., and  Rahimi, A. Preparation of extruded alumina with  suitable crushing strength and good stability", Sci.  Iran., 25(3C), pp. 1434{1439 (2018).  28. Ghomi, G.S., Alavi, H.S., and Ziarati, A. A  multi-component reaction for direct access to 4,40-  (phenylmethylene)bis(1H-pyrazol-5-ol)-3-carboxylates  using nano-NiZr4(PO4)6 in water", Sci. Iran., 25(6),  pp. 3288{3294 (2018).  29. Salabat, A., Mirhoseini, F., and Abdoli, Kh. A microemulsion  route to fabrication of mono and bimetallic  Cu/Zn/-Al2O3 nanocatalysts for hydrogenation  reaction", Sci. Iran., 25(3), pp. 1364{1370 (2018).  30. Subramanian, E. and Subbulekshmi, N.L. Enhanced  heterogeneous wet hydrogen peroxide catalytic oxidation  performance of y ash-derived zeolite by CuO incorporation",  Sci. Iran., 24(3), pp. 1189{1202 (2017).  31. Mosaddegh, E. and Hassankhani, A. Mn (III) complex  catalyzed a green synthesis of 2-amino-4Hchromen-  5(6H)-ones in basic aqueous solution at ambient  temperature", Sci. Iran., 21(6), pp. 2082{2086  (2014).  32. Rezaee Nezhad, E., Abbasi, Z., and Sajjadifar,  S. Fe2+supported on hydroxyapatite-core-shell--  Fe2O3 nanoparticles: As a novel, e_cient and  magnetically-recoverable catalyst for the synthesis of  dihydropyrimidinones derivatives", Sci. Iran., 22(3),  pp. 903{910 (2015).  33. Heidarizadeh, F., Zahedi, M.M., and Nourizad, S. An  e_cient and improved method in the synthesis of 14-  alkyl and 14-aryl-14H-dibenzo [a,j]xanthenes using 1-  butyl-3-methyl imidazolium phosphotungstate as catalyst  under solvent free conditions", Sci. Iran. Trans.  C-Chemistry Chem. Eng., 22, pp. 919{925 (2015).  34. Neyestani-Naeeni, E. and Naimi-Jamal, M.R.  Nanoporous MCM-41-SO3H as an e_cient catalyst  for chalcones and dibenzylidene alkanones synthesis  via solvent-free aldol condensation reaction", Sci.  Iran., 22(6), pp. 2282{2289 (2015).  35. Rajak, U., Nashine, P., Singh, T.S., et al. Numerical  Investigation of combustion, performance and emission  characteristics of various biofuels", Energy Convers.  Manag., 156, pp. 235{252 (2018).  36. Rajak, U., Nashine, P., and Verma, T.N. Comparative  assessment of the emission characteristics of _rst,  second and third generation biodiesel as fuel in a diesel  engine", J. Thermal Engg (2018) (In press).  37. Rajak, U., Nashine, P., and Verma, T.N. E_ect of fuel  injection pressure in a diesel engine using Microalgaediesel  emulsion", Int. J. Engg. Adv. Tech., 8(3), pp.  225{232 (2019).  38. Rajak, U. and Verma, T.N. Numerical investigation  on cylindrical combustion chamber for methane-air  fuel", Int. J. Theo. App. Research Mech Engg, 6(1),  pp. 148{150 (2017).  39. Kumar, R. and Verma, T.N. Performance characteristics  of a spark ignited variable compression ratio engine  at erratic loads", Int. J. App. Phy, 3, pp. 9{13 (2018).  40. Singh, T.S. and Verma, T.N. An assessment study  of using Turel Kongreng (river mussels) as a source  of heterogeneous catalyst for biofuel production", Biocatalysis  and Agricultural Biotechnology, 20, 101185  (2019).  41. Fayaz, A.M., Balaji, K., Kalaichelvan, P.T., et al.  Fungal based synthesis of silver nanoparticles-An  e_ect of temperature on the size of particles", Colloids  Surf., 74 (B), pp. 123{126 (2009).  42. Liu, H, Zhang, H., Wang, J., et al. E_ect of temperature  on the size of biosynthesized silver nanoparticle:  Deep insight into microscopic kinetics analysis", Arab.  J. Chem., 13(1), pp. 1011{1019 (2020).  T.S. Singh and T.N. Verma/Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 2915{2923 2923  43. Zaki, M.I., Knozinger, H., Tesche, B., et al. Inuence  of phosphonation and phosphation on surface acidbase  and morphological properties of CaO as investigated  by in situ FTIR spectroscopy and electron  microscopy", J. Colloid Interface Sc., 303, pp. 9{17  (2006).  44. Pandit, P.R. and Fulekar, M.H. Egg shell waste as  heterogeneous nanocatalyst for biodiesel production:  Optimized by response surface methodology", J. Environ.  Manage., 198, pp. 319{329 (2017).  45. Adeyeye, E.I. Comparative study on the characteristics  of egg shells of some bird species", Bull. Chem.  Soc. Ethiop., 23(2), pp. 159{166 (2009).  46. AOAC, O_cial Methods of Analysis, 16th Ed. Association  of o_cial analytical chemists, Gaithersburg, MD  (1998).  47. Singh, T.S. and Verma, T.N. Taguchi design approach  for extraction of methyl ester from waste cooking  oil using synthesized CaO as heterogeneous catalyst:  Response surface methodology optimization", Energy  Convers. Manag., 182, pp. 383{397 (2019).