Computational optimization of a UFAD system using large eddy simulation

Document Type : Article


Department of Mechanical Engineering, Amirkabir University of Technology, 424 Hafez Avenue, Tehran, P.O. Box: 15875-4413, Iran


In the present study, the Large Eddy Simulation (LES) turbulence closure is implemented, for the first time, to the best of our knowledge, to investigate the air conditioning system in a large space. The results of LES simulations are validated against experimental measurements and the model is used to study the effect of different design variables, including the Air Changes per Hour (ACH), supply temperature, and return air vent height, on design objectives, such as local and global thermal comfort indexes and the energy saving parameter, via a systematic multi-objective optimization approach. The sensitivity analysis shows that the global and local thermal comfort indexes are most sensitive to the air supply temperature while the energy saving is sensitive to ACH and the supply temperature to the same extent. In addition, the return air vent height affects the energy saving more than the other objectives. Finally, with the best design proposed by the multi-objective optimization, an energy saving of 22.9% is achievable while keeping the thermal comfort indexes within the allowable range.


Main Subjects

1. Haines, R.W. and Hittle, D.C., Control Systems for
Heating, Ventilating, and Air Conditioning: Springer
Sci. Bus. Media (2006).
2. Eslami, J., Abbassi, A., and Saidi, M. Numerical
simulation of the e ect of visitor's movement on
bacteria-carrying particles distribution in hospital isolation
room", Scientia Iranica., Trans., B, Mech. Eng.,
24(3), pp. 1160{1170 (2017).
3. Bauman, F. and Webster, T. Outlook for under
air distribution", ASHRAE J., 43(6), p. 18 (2001).
4. Lin, Z., Chow, T., Fong, K., et al. Comparison of
performances of displacement and mixing ventilations.
Part I: thermal comfort", Int. J. Refrig, 28(2), pp.
276{287 (2005).
5. Lin, Z., Chow, T., Fong, K., et al. Comparison of
performances of displacement and mixing ventilations.
Part II: indoor air quality", Int. J. Refrig, 28(2), pp.
288{305 (2005).
6. Lin, Z., Chow, T., Tsang, C., et al. CFD study on
e ect of the air supply location on the performance of
the displacement ventilation system", Build Environ,
40(8), pp. 1051{1067 (2005).
7. Chung, J.D., Hong, H., and Yoo, H. Analysis on the
impact of mean radiant temperature for the thermal
comfort of under
oor air distribution systems", Energy
Build, 42(12), pp. 2353{2359 (2010).
8. Alajmi, A. and El-Amer, W. Saving energy by using
oor-air-distribution (UFAD) system in commercial
buildings", Energy Convers. Manage, 51(8), pp.
1637{1642 (2010).
9. Xu, H., Gao, N., and Niu, J. A method to generate
e ective cooling load factors for strati ed air distribution
systems using a
oor-level air supply", HVAC
Res., 15(5), pp. 915{930 (2009).
10. Fan, Y., Li, X., Yan, Y., et al. Overall performance
evaluation of under
oor air distribution system with
di erent heights of return vents", Energy Build, 147,
pp. 176{187 (2017).
11. Lin, Y. and Tsai, T. An experimental study on a fullscale
indoor thermal environment using an under-
air distribution system", Energy Build, 80, pp. 321{
330 (2014).
12. Peng, P., Gong, G., Mei, X., et al. Investigation on
thermal comfort of air carrying energy radiant airconditioning
system in south-central China", Energy
Build, 182, pp. 51{60 (2019).
13. Cao, S.-J. and Deng, H.-Y. Investigation of temperature
regulation e ects on indoor thermal comfort, air
quality, and energy savings toward green residential
buildings", Sci. Technol. Built Environ, 25(3), pp. 1{
13 (2019).
14. Stamou, A. and Katsiris, I. Veri cation of a CFD
model for indoor air
ow and heat transfer", Built
Environ, 41(9), pp. 1171{1181 (2006).
15. Talatahari, S., Hakimpour, F., and Ranjbar, A. Application
of multi-objective charged system search algorithm
for optimization problems", Scientia Iranica,
26(3), pp. 1249{1265 (2019).
16. Sotoudeh-Anvari, A., Sadjadi, S.J., Molana, S.M.H.,
et al. A stochastic multi-objective model based on
the classical optimal search model for searching for the
people who are lost in response stage of earthquake",
Scientia Iranica, 26(3), pp. 1842{1864 (2019).
17. Alikhani-Kooshkak, R., Tavakkoli-Moghaddam, R.,
Jamili, A., et al. Multi-objective mathematical modeling
of an integrated train makeup and routing problem
in an Iranian railway company", Scientia Iranica,
(In press).
18. Shan, X., Xu, W., Lee, Y.-K., et al. Evaluation of
thermal environment by coupling CFD analysis and
wireless-sensor measurements of a full-scale room with
cooling system", Sustainable Cities and Soc, 45, pp.
395{405 (2019).
19. Ahmed, A.Q. and Gao, S. Numerical investigation
of height impact of local exhaust combined with an
oce work station on energy saving and indoor environment",
Build. Environ, 122, pp. 194{205 (2017).
20. Zhang, K., Zhang, X., Li, S., et al. Experimental
parametric study on the temperature distribution of an
oor air distribution (UFAD) system with grille
di users", Indoor Built Environ, 25(5), pp. 748{757
21. Nada, S., El-Batsh, H., Elattar, H., et al. CFD
investigation of air
ow pattern, temperature distribution
and thermal comfort of UFAD system for theater
buildings applications", J. Build. Eng., 6, pp. 274{300
22. Alajmi, A.F., Baddar, F.A., and Bourisli, R.I. Thermal
comfort assessment of an oce building served
by under-
oor air distribution (UFAD) system-A case
study", Build. Environ, 85, pp. 153{159 (2015).
23. Alajmi, A.F., Abou-Ziyan, H.Z., and El-Amer,
W. Energy analysis of under-
oor air distribution
(UFAD) system: An oce building case study", Energy
Convers Manage, 73, pp. 78{85 (2013).
24. Kim, G., Schaefer, L., Lim, T. S., et al. Thermal
comfort prediction of an under
oor air distribution
system in a large indoor environment", Energy Build,
64, pp. 323{331 (2013).
25. Fong, M., Lin, Z., Fong, K., et al. Evaluation of
thermal comfort conditions in a classroom with three
ventilation methods", Indoor Air, 21(3), pp. 231{239
2888 R. Rahmaninia et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 2871{2888
26. Lin, Z., Chow, T.T., Tsang, C., et al. E ect of
internal partitions on the performance of under
air supply ventilation in a typical oce environment",
Build. Environ, 44(3), pp. 534{545 (2009).
27. Awad, A., Calay, R., Badran, O., et al. An experimental
study of strati ed
ow in enclosures", Appl.
Therm. Eng., 28(17), pp. 2150{2158 (2008).
28. Lin, Y.-J.P. and Linden, P. A model for an under
air distribution system", Energy Build, 37(4), pp. 399{
409 (2005).
29. Wan, M. and Chao, C. Numerical and experimental
study of velocity and temperature characteristics in
a ventilated enclosure with under
oor ventilation systems",
Indoor Air, 15(5), pp. 342{355 (2005).
30. Rodi, W., Turbulent Buoyant Jets and Plumes, 3:
Pergamon press Oxford (1982).
31. McGrattan, K.B., Baum, H.R., Rehm, R.G., et al.,
Fire Dynamics Simulator{Technical Reference Guide,
National Institute of Standards and Technology, Building
and Fire Research Laboratory (2000).
32. Stephen, B., Pope Turbulent Flows, Ed: Cambridge
University Press, Cambridge (2000).
33. Deardor , J.W. Stratocumulus-capped mixed layers
derived from a three-dimensional model", Boundary
Layer Meteorol, 18(4), pp. 495{527 (1980).
34. Wilcox, D.C., Turbulence Modeling for CFD, 2: DCW
industries La Canada, CA (1998).
35. Chase, M.W. NIST-JANAF thermochemical tables",
4th Ed., J. Phys. Chem. Ref. Data, Monograph 9
36. Fanger, P.O., Thermal comfort. Analysis and Applications
in Environmental Engineering, Danish Technical
Press, Copenhagen (1970).
37. Fanger, P. Moderate thermal environments determination
of the PMV and PPD indices and speci cation
of the conditions for thermal comfort", ISO 7730
38. ASHRAE Handbook, Fundamentals, American Society
of Heating, Refrigerating and Air Conditioning Engineers,
Atlanta, 111 (2001).
39. Cheng, Y., Niu, J., and Gao, N. Strati ed air
distribution systems in a large lecture theatre: A
numerical method to optimize thermal comfort and
maximize energy saving", Energy Build., 55, pp. 515{
525 (2012).
40. Roe, P.L. Characteristic-based schemes for the Euler
equations", Annu. Rev. Fluid Mech., 18(1), pp. 337{
365 (1986).
41. Available:
42. Loomans, M., The Measurement and Simulation of
Indoor Air Flow, University of Eindhoven (1998).
43. Pronzato, L. and Muller, W.G. Design of computer
experiments: space lling and beyond", Stat. Comput,
22(3), pp. 681{701 (2012).
44. Celik, I., Cehreli, Z., and Yavuz, I. Index of resolution
quality for large eddy simulations", J. Fluids Eng.,
127(5), pp. 949{958 (2005).
45. Sardasht, M.T., Hosseini, R., and Amani, E. An
analysis of turbulence models for prediction of forced
convection of air stream impingement on rotating disks
at di erent angles", Int. J. Therm. Sci., 118, pp. 139{
151 (2017).
46. Safavi, M. and Amani, E. A comparative study of
turbulence models for non-premixed swirl-stabilized

ames", J. Turbul., 19(11{12), pp. 1017{1050 (2018).
47. Lin, Y. and Zhang, H.H. Component selection and
smoothing in multivariate nonparametric regression",
Ann. Stat., 34(5), pp. 2272{2297 (2006).
48. Deb, K., Pratap, A., Agarwal, S., et al. A fast and
elitist multiobjective genetic algorithm: NSGA-II",
IEEE Trans. Evol. Comput., 6(2), pp. 182{197 (2002).