Computational optimization of a UFAD system using large eddy simulation

Document Type : Article


Department of Mechanical Engineering, Amirkabir University of Technology, 424 Hafez Avenue, Tehran, P.O. Box: 15875-4413, Iran


In the present study, the Large Eddy Simulation (LES) turbulence closure is implemented, for the first time, to the best of our knowledge, to investigate the air conditioning system in a large space. The results of LES simulations are validated against experimental measurements and the model is used to study the effect of different design variables, including the Air Changes per Hour (ACH), supply temperature, and return air vent height, on design objectives, such as local and global thermal comfort indexes and the energy saving parameter, via a systematic multi-objective optimization approach. The sensitivity analysis shows that the global and local thermal comfort indexes are most sensitive to the air supply temperature while the energy saving is sensitive to ACH and the supply temperature to the same extent. In addition, the return air vent height affects the energy saving more than the other objectives. Finally, with the best design proposed by the multi-objective optimization, an energy saving of 22.9% is achievable while keeping the thermal comfort indexes within the allowable range.


Main Subjects

  1. Refrences:

    1. Haines, R.W. and Hittle, D.C., Control Systems for  Heating, Ventilating, and Air Conditioning: Springer  Sci. Bus. Media (2006). 
    2. . Eslami, J., Abbassi, A., and Saidi, M. Numerical  simulation of the effect of visitor's movement on  bacteria-carrying particles distribution in hospital isolation  room", Scientia Iranica., Trans., B, Mech. Eng.,  24(3), pp. 1160{1170 (2017).  
    3.  Bauman, F. and Webster, T. Outlook for underoor  air distribution", ASHRAE J., 43(6), p. 18 (2001). 
    4.  Lin, Z., Chow, T., Fong, K., et al. Comparison of  performances of displacement and mixing ventilations.  Part I: thermal comfort", Int. J. Refrig, 28(2), pp.  276{287 (2005). 
    5. Lin, Z., Chow, T., Fong, K., et al. Comparison of  performances of displacement and mixing ventilations.  Part II: indoor air quality", Int. J. Refrig, 28(2), pp.  288{305 (2005). 
    6. Lin, Z., Chow, T., Tsang, C., et al. CFD study on  e_ect of the air supply location on the performance of  the displacement ventilation system", Build Environ,  40(8), pp. 1051{1067 (2005).  7. Chung, J.D., Hong, H., and Yoo, H. Analysis on the  impact of mean radiant temperature for the thermal  comfort of underoor air distribution systems", Energy  Build, 42(12), pp. 2353{2359 (2010).  8. Alajmi, A. and El-Amer, W. Saving energy by using  underoor-air-distribution (UFAD) system in commercial  buildings", Energy Convers. Manage, 51(8), pp.  1637{1642 (2010).  9. Xu, H., Gao, N., and Niu, J. A method to generate  e_ective cooling load factors for strati_ed air distribution  systems using a oor-level air supply", HVAC  Res., 15(5), pp. 915{930 (2009).  10. Fan, Y., Li, X., Yan, Y., et al. Overall performance  evaluation of underoor air distribution system with  di_erent heights of return vents", Energy Build, 147,  pp. 176{187 (2017).  11. Lin, Y. and Tsai, T. An experimental study on a fullscale  indoor thermal environment using an under-oor  air distribution system", Energy Build, 80, pp. 321{  330 (2014).  12. Peng, P., Gong, G., Mei, X., et al. Investigation on  thermal comfort of air carrying energy radiant airconditioning  system in south-central China", Energy  Build, 182, pp. 51{60 (2019).  13. Cao, S.-J. and Deng, H.-Y. Investigation of temperature  regulation e_ects on indoor thermal comfort, air  quality, and energy savings toward green residential  buildings", Sci. Technol. Built Environ, 25(3), pp. 1{  13 (2019).  14. Stamou, A. and Katsiris, I. Veri_cation of a CFD  model for indoor airow and heat transfer", Built  Environ, 41(9), pp. 1171{1181 (2006).  15. Talatahari, S., Hakimpour, F., and Ranjbar, A. Application  of multi-objective charged system search algorithm  for optimization problems", Scientia Iranica,  26(3), pp. 1249{1265 (2019).  16. Sotoudeh-Anvari, A., Sadjadi, S.J., Molana, S.M.H.,  et al. A stochastic multi-objective model based on  the classical optimal search model for searching for the  people who are lost in response stage of earthquake",  Scientia Iranica, 26(3), pp. 1842{1864 (2019).  17. Alikhani-Kooshkak, R., Tavakkoli-Moghaddam, R.,  Jamili, A., et al. Multi-objective mathematical modeling  of an integrated train makeup and routing problem  in an Iranian railway company", Scientia Iranica,  (In press).  18. Shan, X., Xu, W., Lee, Y.-K., et al. Evaluation of  thermal environment by coupling CFD analysis and  wireless-sensor measurements of a full-scale room with  cooling system", Sustainable Cities and Soc, 45, pp.  395{405 (2019).  19. Ahmed, A.Q. and Gao, S. Numerical investigation  of height impact of local exhaust combined with an  o_ce work station on energy saving and indoor environment",  Build. Environ, 122, pp. 194{205 (2017).  20. Zhang, K., Zhang, X., Li, S., et al. Experimental  parametric study on the temperature distribution of an  underoor air distribution (UFAD) system with grille  di_users", Indoor Built Environ, 25(5), pp. 748{757  (2016).  21. Nada, S., El-Batsh, H., Elattar, H., et al. CFD  investigation of airow pattern, temperature distribution  and thermal comfort of UFAD system for theater  buildings applications", J. Build. Eng., 6, pp. 274{300  (2016).  22. Alajmi, A.F., Baddar, F.A., and Bourisli, R.I. Thermal  comfort assessment of an o_ce building served  by under-oor air distribution (UFAD) system-A case  study", Build. Environ, 85, pp. 153{159 (2015).  23. Alajmi, A.F., Abou-Ziyan, H.Z., and El-Amer,  W. Energy analysis of under-oor air distribution  (UFAD) system: An o_ce building case study", Energy  Convers Manage, 73, pp. 78{85 (2013).  24. Kim, G., Schaefer, L., Lim, T. S., et al. Thermal  comfort prediction of an underoor air distribution  system in a large indoor environment", Energy Build,  64, pp. 323{331 (2013).  25. Fong, M., Lin, Z., Fong, K., et al. Evaluation of  thermal comfort conditions in a classroom with three  ventilation methods", Indoor Air, 21(3), pp. 231{239  (2011).  2888 R. Rahmaninia et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 2871{2888  26. Lin, Z., Chow, T.T., Tsang, C., et al. E_ect of  internal partitions on the performance of under oor  air supply ventilation in a typical o_ce environment",  Build. Environ, 44(3), pp. 534{545 (2009).  27. Awad, A., Calay, R., Badran, O., et al. An experimental  study of strati_ed ow in enclosures", Appl.  Therm. Eng., 28(17), pp. 2150{2158 (2008).  28. Lin, Y.-J.P. and Linden, P. A model for an under oor  air distribution system", Energy Build, 37(4), pp. 399{  409 (2005).  29. Wan, M. and Chao, C. Numerical and experimental  study of velocity and temperature characteristics in  a ventilated enclosure with underoor ventilation systems",  Indoor Air, 15(5), pp. 342{355 (2005).  30. Rodi, W., Turbulent Buoyant Jets and Plumes, 3:  Pergamon press Oxford (1982).  31. McGrattan, K.B., Baum, H.R., Rehm, R.G., et al.,  Fire Dynamics Simulator{Technical Reference Guide,  National Institute of Standards and Technology, Building  and Fire Research Laboratory (2000).  32. Stephen, B., Pope Turbulent Flows, Ed: Cambridge  University Press, Cambridge (2000).  33. Deardor_, J.W. Stratocumulus-capped mixed layers  derived from a three-dimensional model", Boundary  Layer Meteorol, 18(4), pp. 495{527 (1980).  34. Wilcox, D.C., Turbulence Modeling for CFD, 2: DCW  industries La Canada, CA (1998).  35. Chase, M.W. NIST-JANAF thermochemical tables",  4th Ed., J. Phys. Chem. Ref. Data, Monograph 9  (1999).  36. Fanger, P.O., Thermal comfort. Analysis and Applications  in Environmental Engineering, Danish Technical  Press, Copenhagen (1970).  37. Fanger, P. Moderate thermal environments determination  of the PMV and PPD indices and speci_cation  of the conditions for thermal comfort", ISO 7730  (1984).  38. ASHRAE Handbook, Fundamentals, American Society  of Heating, Refrigerating and Air Conditioning Engineers,  Atlanta, 111 (2001).  39. Cheng, Y., Niu, J., and Gao, N. Strati_ed air  distribution systems in a large lecture theatre: A  numerical method to optimize thermal comfort and  maximize energy saving", Energy Build., 55, pp. 515{  525 (2012).  40. Roe, P.L. Characteristic-based schemes for the Euler  equations", Annu. Rev. Fluid Mech., 18(1), pp. 337{  365 (1986).  41. Available:  42. Loomans, M., The Measurement and Simulation of  Indoor Air Flow, University of Eindhoven (1998).  43. Pronzato, L. and Muller, W.G. Design of computer  experiments: space _lling and beyond", Stat. Comput,  22(3), pp. 681{701 (2012).  44. Celik, I., Cehreli, Z., and Yavuz, I. Index of resolution  quality for large eddy simulations", J. Fluids Eng.,  127(5), pp. 949{958 (2005).  45. Sardasht, M.T., Hosseini, R., and Amani, E. An  analysis of turbulence models for prediction of forced  convection of air stream impingement on rotating disks  at di_erent angles", Int. J. Therm. Sci., 118, pp. 139{  151 (2017).  46. Safavi, M. and Amani, E. A comparative study of  turbulence models for non-premixed swirl-stabilized  ames", J. Turbul., 19(11{12), pp. 1017{1050 (2018).  47. Lin, Y. and Zhang, H.H. Component selection and  smoothing in multivariate nonparametric regression",  Ann. Stat., 34(5), pp. 2272{2297 (2006).  48. Deb, K., Pratap, A., Agarwal, S., et al. A fast and  elitist multiobjective genetic algorithm: NSGA-II",  IEEE Trans. Evol. Comput., 6(2), pp. 182{197 (2002).