1. Guo, X., Du, Z., Li, G., et al. High frequency vibration recovery enhancement technology in the heavy oil _elds of China", SPE International Thermal A. Soroureddin et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 2419{2432 2431 Operations and Heavy Oil Symposium, Bakers_eld, California, 16{18 March, SPE-86956, pp. 1{18 (2004). 2. Xu, H. and Pu, C. Removal of near-wellbore formation damage by ultrasonic stimulation", Pet. Sci. Technol., 31, pp. 563{571 (2013). 3. Jin, Y., Zheng, X., Chu, X., et al. Oil recovery from oil sludge through combined ultrasound and thermochemical cleaning treatment", Ind. Eng. Chem. Res., 51, pp. 9213{9217 (2012). 4. Massoud, E.Z., Xiao, Q., El-Gamal, H.A., et al. Numerical study of an individual Taylor bubble rising through stagnant liquids under laminar ow regime", Ocean Eng., 162, pp. 117{137 (2018). 5. Amani, E., Ahmadpour, A., and Tohidi, M. A numerical study of the rise of a Taylor bubble through a sudden/gradual expansion in Newtonian and shearthinning liquids", Scientia Iranica, 152, pp. 236{246 (2019). 6. Zhang, S., Wang, S.P., Zhang, A.M., et al. Numerical study on motion of the air-gun bubble based on boundary integral method", Ocean Eng., 154, pp. 70{ 80 (2018). 7. Ziolkowski, A. Measurement of air-gun bubble oscillations", Geophys., 63, pp. 2009{2024 (1998). 8. Chahine, G.L., Hsiao, Ch.T., Choi, J.K., et al. Bubble augmented water jet propulsion: two-phase model development and experimental validation", 27th Symposium on Naval Hydrodynamics, Seoul, Korea, 5{10 October, pp. 1{17 (2008). 9. Wu, X., Choi, J.K., Singh, S., et al. Experimental and numerical investigation of bubble augmented water jet propulsion", J. Hydraulics, 24, pp. 635{647 (2012). 10. Hayati, A.N., Hashemi, S.M., and Shams, M. Design and analysis of bubble-injected water ramjets with discrete injection con_gurations by computational uid dynamics method", Proc. IMechE Part C: J. Mechanical Engineering Science, 227, pp. 1945{1955 (2015). 11. Makaloski, V., Rohl_s, F., Konstantinos, S., et al. Bubble counter for measurement of air bubbles during thoracic stent-graft deployment in a ow model", J. Surg. Res., 232, pp. 121{127 (2018). 12. S_anchez, R.M., Rivero, F., Bastante, T., et al. Intracoronary bubbles: Iatrogenic air embolism assessed with optical coherence tomography", JACC Cardiovascular Interventions, 10, pp. 153{154 (2017). 13. Farhangmehr, V., Hajizadeh, A., Shervani-Tabar, M.T., et al. Numerical investigation on the pulsating bubble dynamics in a narrow cylinder with a compliant coating", Fluid Dyn. Res., 46, 015513, pp. 1{27 (2014). 14. Ni, B.Y., Zhang, A.M., Wang, Q.X., et al. Experimental and numerical study on the growth and collapse of a bubble in a narrow tube", Acta Mech. Sin., 28, pp. 1248{1260 (2012). 15. Baradaran-Fard, M. and Nikseresht, A.H. Numerical simulation of unsteady 3D cavitating ows over axisymmetric cavitators", Scientia Iranica, 19, pp. 1265{ 1278 (2012). 16. Hana_zadeh, P., Saidi, M.H., Nouri Gheimasi, M.H., and Ghanbarzadeh, S. Experimental investigation of air-water, two-phase ow regimes in vertical mini pipe", Scientia Iranica, 18, pp. 923{929 (2011). 17. Shervani-Tabar, M.T. and Rouhollahi, R. Numerical study on the e_ect of the concave rigid boundaries on the cavitation intensity", Scientia Iranica, 24, pp. 1958{1965 (2017). 18. Fayzi, P., Bastani, D., Lot_, M., and Chamangiz Khararoodi, M. The e_ects of bubble detachment shape on rising bubble hydrodynamics", Scientia Iranica, 26(3), pp. 1546{1554 (2018). DOI: 10.24200/sci.2018.51823.2383. 19. Ory, E., Yuan, H., Prosperetti, A., et al. Growth and collapse of a vapor bubble in a narrow tube", Phys. Fluids, 12, pp. 1268{1277 (2000). 20. Shervani-Tabar, M.T. and Eslamian, A. Dynamics of a vapour bubble inside a vertical rigid cylinder", 16th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia, 2-7 December, pp. 1420{ 1426 (2007). 21. Miao, H., Gracewski, S.M., and Dalecki, D. Ultrasonic excitation of a bubble inside a deformable tube: Implications for ultrasonically induced hemorrhage", J. Acoust Soc. Am., 124, pp. 2374{2384 (2008). 22. Clanet, Ch., Heraud, P., and Starby G. On the motion of bubbles in vertical tubes of arbitrary crosssections: some complements to the Dumitrescu-Taylor problem", J. Fluid Mech., 519, pp. 359{376 (2004). 23. Moore, D.W. The boundary layer on a spherical gas bubble", J. Fluid Mech., 16, pp. 161{176 (1963). 24. Kang, I.S. and Leal, L.G. The drag coe_cient for a spherical bubble in a uniform streaming ow", Phys. Fluids, 31, pp. 233{237 (1988). 25. Joseph, D.D. Potential ow of viscous uids: historical notes", Int. J. Multiphase Flow, 32, pp. 285{310 (2006). 26. Klaseboer, E., Manica, R., Chan, D.Y.C., et al. BEM simulations of potential ow with viscous e_ects as applied", Eng. Anal. Boundary Elem., 35, pp. 489{494 (2011). 27. Joseph, D.D. and Wang, H. Dissipation approximation and viscous potential ow", J. Fluid Mech., 505, pp. 365{377 (2004). 28. Manmi, K. and Wang, Q. Acoustic microbubble dynamics with viscous e_ects", Ultrason. Sonochem., 36, pp. 427{436 (2016). 29. Zhang, A.M. and Ni, B.Y. Three-dimensional boundary integral simulations of motion and deformation of bubbles with viscous e_ects", Comput. Fluids, 92, pp. 22{33 (2014). 30. Wang, S.P., Wang, Q.X., Leppinen, D.M., et al. Acoustic bubble dynamics in a microvessel surrounded by elastic material", Phys. Fluids, 30, 012104, pp. 1{10 (2018). 2432 A. Soroureddin et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 2419{2432 31. Minsier, V., Wilde, J.D., and Proost, J. Simulation of the e_ect of viscosity on jet penetration into a single cavitating bubble", J. Appl. Phys., 106, 084906, pp. 1{10 (2009). 32. Taib, B.B. Boundary integral method applied to cavitation bubble dynamics", PhD Thesis, University of Wollongong, Australia (1985). 33. Mehravarana, M. and Kazemzadeh, S. Simulation of buoyant bubble motion in viscous ows employing lattice Boltzmann and level set methods", Scientia Iranica, 18, pp. 231{240 (2011). 34. Lind, S.J. and Philips, T.N. The e_ect of viscoelasticity on the dynamics of gas bubbles near free surfaces", Phys. Fluids, 25, 022104, pp. 1{32 (2013). 35. Katsikadelis, J.T. Preliminary mathematical concept", In Boundary Elements: Theory and Applications, 1st Ed., UK, Elsevier Science, p. 16 (2002). 36. Zhou, J., Hu, J., and Yuan, Sh. Modeling bubble evolution in air-oil mixture with a simpli_ed method", Proc. IMechE Part C: J. Mechanical Engineering Science, 230, pp. 2865{2871 (2016). 37. White, F.M. Fundamental equations of compressible viscous ow", In Viscous Fluid Flow, 2nd Ed., New York, McGraw-Hill, pp. 61{69 (1991). 38. Batchelor, G.K. Flow at large Reynolds number: e_ects of viscosity", In An Introduction to Fluid Dynamics, 1st Ed., UK, Cambridge University Press, pp. 264{377 (2000). 39. Joseph, D.D., Funada, T., and Wang, J. Helmholtz decomposition coupling rotational to irrotational ow", In Potential Flows of Viscous and Viscoelastic Fluids, 1st Ed., UK, Cambridge University Press, pp. 15{18 (2007). 40. Shervani-Tabar, M.T. Computer study of a cavity bubble near a rigid boundary, a free surface and a compliant wall", PhD Thesis, University of Wollongong, Australia (1995).