A novel grey object matrix incidence clustering model for panel data and its application

Document Type : Review Article

Authors

School of Business, Jiangnan University, Jiangsu Wuxi 214122, China

Abstract

In order to fully excavate the information contained in the multi-index panel data, one take decision objects as the research object, and the development state matrix and the development speed matrix of the decision objects are defined by considering the cross-section information and time information of the decision objects, and then the distances among the objects over the indexes are given. Based on grey incidence analysis, the absolute difference and relative difference between the measure value matrices are used to characterize and measure the close degree of the development state matrix and the development level matrix of the decision objects, so that the grey object matrix absolute incidence analysis model is established, and then according to the grey incidence degree between the objects, the objects can be clustered based on hierarchical clustering algorithm. Finally, a clustering problem of regional patent research and development (R&D) efficiency is used to verify the validity and rationality of the proposed model.

Keywords

Main Subjects


References
1. Nie, G., Chen, Y.B., Zhang, L.L., and Guo, Y. \Credit
card customer analysis based on panel data clustering",
Procedia Computer Science, 1(1), pp. 2489{2497
(2010).
2. Ando, T. and Bai, J.S. \Clustering huge number of
nancial time series: A panel data approach with highdimensional
predictors and factor structures", J. Am.
Stat. Assoc., 112(519), pp. 1182{1198 (2017).
3. Wang, M. and Feng, C. \Decomposition of energyrelated
CO2 emissions in China: an empirical analysis
based on provincial panel data of three sectors", Appl.
Energy, 190, pp. 772{787 (2017).
4. Munshi, A.A. and Yasser, A.R.M. \Photovoltaic power
pattern clustering based on conventional and swarm
clustering methods", Sol. Energy, 124, pp. 39{56
(2016).
5. Bonzo, D.C. and Hermosilla, A.Y. \Clustering panel
data via perturbed adaptive simulated annealing and
genetic algorithms", Adv. Complex Syst., 5(04), pp.
339{360 (2002).
6. Moody, C.E. and Marvell, T.B. \Clustering and standard
error bias in xed e ects panel data regressions",
J. Quant. Criminol., 26(2), pp. 347{369 (2020).
7. Fruhwirth-Schnatter, S. \Panel data analysis: a survey
on model-based clustering of time series", Adv. Data
Anal. Classif., 5(4), pp. 251{280 (2011).
8. Jacques, J. and Biernacki, C. \Model-based coclustering
for ordinal data", Comput. Stat. Data Anal.,
123, pp. 101{115 (2018).
9. Alaeddini, A., Ghazanfari, M., and Nayeri, M.A.
\A hybrid fuzzy-statistical clustering approach for
estimating the time of changes in xed and variable
sampling control charts", Inf. Sci., 179(11), pp. 1769{
1784 (2009).
10. Ghazanfari, M., Alaeddini, A., Niaki, S.T.A., and
Aryanezhad, M.B. \A clustering approach to identify
the time of a step change in Shewhart control charts",
Qual. Reliab. Eng. Int., 24(7), pp. 765{778 (2008).
11. A mann, C. and Boysen-Hogrefe, J. \A Bayesian
approach to model-based clustering for binary panel
probit models", Comput. Stat. Data Anal., 55(1), pp.
261{279 (2011).
12. Yamazaki, K. \E ects of additional data on Bayesian
clustering", Neural Netw., 94, pp. 86{95 (2017).
13. Banharnsakun, A. \A MapReduce-based arti cial bee
colony for large-scale data clustering", Pattern Recognit.
Lett., 93, pp. 78{84 (2017).
14. Alizadeh, S., Ghazanfari, M., and Fathian, M. \Using
data mining for learning and clustering FCM", International
Journal of Computational Intelligence, 4(2),
pp. 118{125 (2008).
15. Azzalini, A. and Menardi, G. \Density-based clustering
with non-continuous data", Comput. Stat., 31(2),
pp. 771{798 (2016).
16. Malsiner-Walli, G., Fruhwirth-Schnatter, S., and
Grun, B. \Model-based clustering based on sparse
nite Gaussian mixtures", Stat. Comput., 26(1{2), pp.
303{324 (2016).
17. Peters, G. \Rough clustering utilizing the principle of
indi erence", Inf. Sci., 277, pp. 358{374 (2014).
18. Saltos, R. and Weber, R. \A Rough-Fuzzy approach
for support vector clustering", Inf. Sci., 339, pp. 353{
368 (2016).
19. Zhou, J., Lai, Z., Miao, D., Gao, C., and Yue,
X. \Multigranulation rough-fuzzy clustering based on
shadowed sets", Inf. Sci., 507, pp. 553{573 (2020).
20. Liu, S.F., Yang, Y.J., and Forrest, J., Grey Data
Analysis, Springer, Singapore (2017).
21. Wu, L.F., Liu, S.F., Yao, L.G., and Yu, L. \Fractional
order grey relational analysis and its application", Sci.
Iran., 22(3), p. 1171 (2015).
22. Zavadskas, E.K., Antucheviciene, J., Turskis, Z., and
Adeli, H. \Hybrid multiple-criteria decision-making
methods: A review of applications in engineering", Sci.
Iran., 23(1), pp. 1{20 (2016).
23. Kolahan, F. and Moghaddam, M.A. \The use of
Taguchi method with grey relational analysis to optimize
the EDM process parameters with multiple
quality characteristics", Sci. Iran., 22(2), pp. 530{538
(2015).
24. Lee, Y.L., Tsai, F.C., Liu, S.F., and Hsu, Y.C.
\A scale development of industrial designer ability
index through quality function deployment and grey
relational analysis methods", Adv. Mech. Eng., 8(12),
pp. 1{11 (2016).
25. Zhu, J.J., Zhang, S.T., Chen, Y., and Zhang, L.
\A hierarchical clustering approach based on threedimensional
gray relational analysis for clustering a
large group of decision makers with double information",
Group Decis. Negot., 25(2), pp. 325{354 (2016).
26. Hashemi, S.H., Karimi, A., and Tavana, M. \An
integrated green supplier selection approach with analytic
network process and improved Grey relational
analysis", Int. J. Prod. Econ., 159, pp. 178{191 (2015).
27. Rajesh, R. and Ravi, V. \Supplier selection in resilient
supply chains: a grey relational analysis approach", J.
Clean Prod., 86, pp. 343{359 (2015).
28. Wang, P., Zhu, Z., and Wang, Y. \A novel hybrid
MCDM model combining the SAW, TOPSIS and GRA
methods based on experimental design", Inf. Sci., 345,
pp. 27{45 (2016).
382 Y. Liu et al./Scientia Iranica, Transactions E: Industrial Engineering 28 (2021) 371{385
29. Xie, N.M., Han, Y., and Li, Z. \A novel approach
to fuzzy soft sets in decision making based on grey
relational analysis and MYCIN certainty factor", Int.
J. Comput. Intell. Syst., 8(5), pp. 959{976 (2015).
30. Wu, L.F. and Liu, S.F. \Panel data clustering method
based on grey convex relation and its application",
Control and Decision, 28(7), pp. 1033{1037 (2013).
31. Wu, L.F., Liu, S.F., Yao, L.G., and Yan, S.L. \Grey
convex relational degree and its application to evaluate
regional economic sustainability", Sci. Iran., 20(1),
pp. 44{49 (2013).
32. Wang, Y.H. and Zuo, W.C. \Research on multi-index
gray clustering approach based on adaptive weight for
panel data", J. Grey Syst., 30(3), pp. 13{32 (2018).
33. Li, X.M., Dang, Y.G., and Wang, J.J. \Grey relational
clustering model for panel data clustering on indexs
and its application", Control and Decision, 30(8), pp.
1447{1452 (2015).
34. Li, X.M., Hipel, K.W., and Dang, Y.G. \An improved
grey relational analysis approach for panel data clustering",
Expert Syst. Appl., 42(23), pp. 9105{9116
(2015).
35. Kuh, E. \The validity of cross-sectionally estimated
behavior equations in time series applications", Econometrica,
27(2), pp. 197{214 (1959).
36. Bell, A. and Jones, K. \Explaining xed e ects: Random
e ects modeling of time-series cross-sectional and
panel data", Political Science Research and Methods,
3(1), pp. 133{153 (2015).
37. Pesaran, M.H., Time Series and Panel Data Econometrics,
Oxford University Press, UK (2015).
38. Izakian, H., Pedrycz, W., and Jamal, I. \Fuzzy clustering
of time series data using dynamic time warping
distance", Eng. Appl. Artif. Intell., 39, pp. 235{244
(2015).
39. Pesaran, M.H. \Testing weak cross-sectional dependence
in large panels", Econom. Rev., 34(6{10), pp.
1089{1117 (2015).
40. Hayakawa, K. and Pesaran, M.H. \Robust standard
errors in transformed likelihood estimation of dynamic
panel data models with cross-sectional heteroscedasticity",
J. Econom., 188(1), pp. 111{134 (2015).
41. Hsiao, C., Analysis of Panel Data, Cambridge university
press, UK (2014).
42. Liu, Y., Quan, B.T., and Du, J.L. \Objectoriented
spatiotemporal characteristic attribute differences
clustering approach for panel data and its
application", J. Grey Syst., 30(2), pp. 84{96 (2018).
43. Zarinbal, M., Zarandi, M.H.F., and Turksen, I.B.
\Relative entropy fuzzy c-means clustering", Inf. Sci.,
260, pp. 74{97 (2014).
44. Zhao, H.F., Li, W.W., and Xu, S. \The eciency of
patent innovation in the di erent regions of China",
Chinese Journal of Management Science, 16(SI), pp.
387{392 (2008).
45. Li, Y.G., Dai, Y., and He, X.Q. \Clustering method
for Panel data base on adaption weighting", Systems
Engineering-Theory & Practice, 33(2), pp. 388{395
(2013).