Document Type : Review Article

**Authors**

School of Business, Jiangnan University, Jiangsu Wuxi 214122, China

**Abstract**

In order to fully excavate the information contained in the multi-index panel data, one take decision objects as the research object, and the development state matrix and the development speed matrix of the decision objects are defined by considering the cross-section information and time information of the decision objects, and then the distances among the objects over the indexes are given. Based on grey incidence analysis, the absolute difference and relative difference between the measure value matrices are used to characterize and measure the close degree of the development state matrix and the development level matrix of the decision objects, so that the grey object matrix absolute incidence analysis model is established, and then according to the grey incidence degree between the objects, the objects can be clustered based on hierarchical clustering algorithm. Finally, a clustering problem of regional patent research and development (R&D) efficiency is used to verify the validity and rationality of the proposed model.

**Keywords**

- panel data
- section information
- time information
- grey incidence analysis
- hierarchical clustering algorithm

**Main Subjects**

1. Nie, G., Chen, Y.B., Zhang, L.L., and Guo, Y. Credit

card customer analysis based on panel data clustering",

Procedia Computer Science, 1(1), pp. 2489{2497

(2010).

2. Ando, T. and Bai, J.S. Clustering huge number of

nancial time series: A panel data approach with highdimensional

predictors and factor structures", J. Am.

Stat. Assoc., 112(519), pp. 1182{1198 (2017).

3. Wang, M. and Feng, C. Decomposition of energyrelated

CO2 emissions in China: an empirical analysis

based on provincial panel data of three sectors", Appl.

Energy, 190, pp. 772{787 (2017).

4. Munshi, A.A. and Yasser, A.R.M. Photovoltaic power

pattern clustering based on conventional and swarm

clustering methods", Sol. Energy, 124, pp. 39{56

(2016).

5. Bonzo, D.C. and Hermosilla, A.Y. Clustering panel

data via perturbed adaptive simulated annealing and

genetic algorithms", Adv. Complex Syst., 5(04), pp.

339{360 (2002).

6. Moody, C.E. and Marvell, T.B. Clustering and standard

error bias in xed eects panel data regressions",

J. Quant. Criminol., 26(2), pp. 347{369 (2020).

7. Fruhwirth-Schnatter, S. Panel data analysis: a survey

on model-based clustering of time series", Adv. Data

Anal. Classif., 5(4), pp. 251{280 (2011).

8. Jacques, J. and Biernacki, C. Model-based coclustering

for ordinal data", Comput. Stat. Data Anal.,

123, pp. 101{115 (2018).

9. Alaeddini, A., Ghazanfari, M., and Nayeri, M.A.

A hybrid fuzzy-statistical clustering approach for

estimating the time of changes in xed and variable

sampling control charts", Inf. Sci., 179(11), pp. 1769{

1784 (2009).

10. Ghazanfari, M., Alaeddini, A., Niaki, S.T.A., and

Aryanezhad, M.B. A clustering approach to identify

the time of a step change in Shewhart control charts",

Qual. Reliab. Eng. Int., 24(7), pp. 765{778 (2008).

11. Amann, C. and Boysen-Hogrefe, J. A Bayesian

approach to model-based clustering for binary panel

probit models", Comput. Stat. Data Anal., 55(1), pp.

261{279 (2011).

12. Yamazaki, K. Eects of additional data on Bayesian

clustering", Neural Netw., 94, pp. 86{95 (2017).

13. Banharnsakun, A. A MapReduce-based articial bee

colony for large-scale data clustering", Pattern Recognit.

Lett., 93, pp. 78{84 (2017).

14. Alizadeh, S., Ghazanfari, M., and Fathian, M. Using

data mining for learning and clustering FCM", International

Journal of Computational Intelligence, 4(2),

pp. 118{125 (2008).

15. Azzalini, A. and Menardi, G. Density-based clustering

with non-continuous data", Comput. Stat., 31(2),

pp. 771{798 (2016).

16. Malsiner-Walli, G., Fruhwirth-Schnatter, S., and

Grun, B. Model-based clustering based on sparse

nite Gaussian mixtures", Stat. Comput., 26(1{2), pp.

303{324 (2016).

17. Peters, G. Rough clustering utilizing the principle of

indierence", Inf. Sci., 277, pp. 358{374 (2014).

18. Saltos, R. and Weber, R. A Rough-Fuzzy approach

for support vector clustering", Inf. Sci., 339, pp. 353{

368 (2016).

19. Zhou, J., Lai, Z., Miao, D., Gao, C., and Yue,

X. Multigranulation rough-fuzzy clustering based on

shadowed sets", Inf. Sci., 507, pp. 553{573 (2020).

20. Liu, S.F., Yang, Y.J., and Forrest, J., Grey Data

Analysis, Springer, Singapore (2017).

21. Wu, L.F., Liu, S.F., Yao, L.G., and Yu, L. Fractional

order grey relational analysis and its application", Sci.

Iran., 22(3), p. 1171 (2015).

22. Zavadskas, E.K., Antucheviciene, J., Turskis, Z., and

Adeli, H. Hybrid multiple-criteria decision-making

methods: A review of applications in engineering", Sci.

Iran., 23(1), pp. 1{20 (2016).

23. Kolahan, F. and Moghaddam, M.A. The use of

Taguchi method with grey relational analysis to optimize

the EDM process parameters with multiple

quality characteristics", Sci. Iran., 22(2), pp. 530{538

(2015).

24. Lee, Y.L., Tsai, F.C., Liu, S.F., and Hsu, Y.C.

A scale development of industrial designer ability

index through quality function deployment and grey

relational analysis methods", Adv. Mech. Eng., 8(12),

pp. 1{11 (2016).

25. Zhu, J.J., Zhang, S.T., Chen, Y., and Zhang, L.

A hierarchical clustering approach based on threedimensional

gray relational analysis for clustering a

large group of decision makers with double information",

Group Decis. Negot., 25(2), pp. 325{354 (2016).

26. Hashemi, S.H., Karimi, A., and Tavana, M. An

integrated green supplier selection approach with analytic

network process and improved Grey relational

analysis", Int. J. Prod. Econ., 159, pp. 178{191 (2015).

27. Rajesh, R. and Ravi, V. Supplier selection in resilient

supply chains: a grey relational analysis approach", J.

Clean Prod., 86, pp. 343{359 (2015).

28. Wang, P., Zhu, Z., and Wang, Y. A novel hybrid

MCDM model combining the SAW, TOPSIS and GRA

methods based on experimental design", Inf. Sci., 345,

pp. 27{45 (2016).

382 Y. Liu et al./Scientia Iranica, Transactions E: Industrial Engineering 28 (2021) 371{385

29. Xie, N.M., Han, Y., and Li, Z. A novel approach

to fuzzy soft sets in decision making based on grey

relational analysis and MYCIN certainty factor", Int.

J. Comput. Intell. Syst., 8(5), pp. 959{976 (2015).

30. Wu, L.F. and Liu, S.F. Panel data clustering method

based on grey convex relation and its application",

Control and Decision, 28(7), pp. 1033{1037 (2013).

31. Wu, L.F., Liu, S.F., Yao, L.G., and Yan, S.L. Grey

convex relational degree and its application to evaluate

regional economic sustainability", Sci. Iran., 20(1),

pp. 44{49 (2013).

32. Wang, Y.H. and Zuo, W.C. Research on multi-index

gray clustering approach based on adaptive weight for

panel data", J. Grey Syst., 30(3), pp. 13{32 (2018).

33. Li, X.M., Dang, Y.G., and Wang, J.J. Grey relational

clustering model for panel data clustering on indexs

and its application", Control and Decision, 30(8), pp.

1447{1452 (2015).

34. Li, X.M., Hipel, K.W., and Dang, Y.G. An improved

grey relational analysis approach for panel data clustering",

Expert Syst. Appl., 42(23), pp. 9105{9116

(2015).

35. Kuh, E. The validity of cross-sectionally estimated

behavior equations in time series applications", Econometrica,

27(2), pp. 197{214 (1959).

36. Bell, A. and Jones, K. Explaining xed eects: Random

eects modeling of time-series cross-sectional and

panel data", Political Science Research and Methods,

3(1), pp. 133{153 (2015).

37. Pesaran, M.H., Time Series and Panel Data Econometrics,

Oxford University Press, UK (2015).

38. Izakian, H., Pedrycz, W., and Jamal, I. Fuzzy clustering

of time series data using dynamic time warping

distance", Eng. Appl. Artif. Intell., 39, pp. 235{244

(2015).

39. Pesaran, M.H. Testing weak cross-sectional dependence

in large panels", Econom. Rev., 34(6{10), pp.

1089{1117 (2015).

40. Hayakawa, K. and Pesaran, M.H. Robust standard

errors in transformed likelihood estimation of dynamic

panel data models with cross-sectional heteroscedasticity",

J. Econom., 188(1), pp. 111{134 (2015).

41. Hsiao, C., Analysis of Panel Data, Cambridge university

press, UK (2014).

42. Liu, Y., Quan, B.T., and Du, J.L. Objectoriented

spatiotemporal characteristic attribute differences

clustering approach for panel data and its

application", J. Grey Syst., 30(2), pp. 84{96 (2018).

43. Zarinbal, M., Zarandi, M.H.F., and Turksen, I.B.

Relative entropy fuzzy c-means clustering", Inf. Sci.,

260, pp. 74{97 (2014).

44. Zhao, H.F., Li, W.W., and Xu, S. The eciency of

patent innovation in the dierent regions of China",

Chinese Journal of Management Science, 16(SI), pp.

387{392 (2008).

45. Li, Y.G., Dai, Y., and He, X.Q. Clustering method

for Panel data base on adaption weighting", Systems

Engineering-Theory & Practice, 33(2), pp. 388{395

(2013).

Transactions on Industrial Engineering (E)

January and February 2021Pages 371-385