The nontrivial zeros of completed zeta function and Riemann hypothesis

Document Type : Article

Author

State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, People's Republic of China.eoples Republic of China.; School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, People's Republic of China. College of Mathematics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China.;College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, People's Republic of China.

10.24200/sci.2019.21465

Abstract

Based on the completed Zeta function, this paper addresses that the real part of
every non-trivial zero of the Riemann’s............

Keywords


1. Carlson, J., Carlson, J.A., Ja_e, A., and Wiles, A., Eds., The Millennium Prize Problems, American Mathematical Society, New York, USA (2006). 2. Jessen, B. and Wintner, A. Distribution functions and the Riemann zeta function", Transactions of the American Mathematical Society, 38(1), pp. 48-88 (1935). 3. Selberg, A. Contribution to the theory of the Riemann zeta-function", Archiv for Mathematik Og Naturvidenskab, 48(5), pp. 89-155 (1946). 4. Hardy, G.H. and Littlewood, J.E. Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes", Acta Mathematica, 41(1), pp. 119-196 (1916). 5. Neukirch, J., Algebraic Number Theory, Springer, Berlin, Heidelberg (the original German edition was published in 1992 under the title Algebraische Zahlentheorie) (1999). 6. Riemann, G.F.B. Uber die Anzahl der Primzahlen unter einer gegebenen Groosse", Monatsberichte der Berliner Akademie, 2, pp. 671-680 (1859). 7. Euler, L. Sur la perfection des verres objectfs des lunettes", M_emoires de lacad_emie des sciences de Berlin, pp. 274-296 (1749). 8. Chebyshev, P.L., Selected Mathematical Works, Moscow-Leningrad (1946) (In Russian). 9. Devlin, K., The Millennium Problems: The Seven Greatest Unsolved Mathematical Puzzles of Our Time, Barnes & Noble, New York (2002). 10. Berry, M.V. and Keating, J.P. The Riemann zeros and eigenvalue asymptotics", Siam Review, 41(2), pp. 236-266 (1999). 11. Sierra, G. and Townsend, P.K. Landau levels and Riemann zeros", Physical Review Letters, 101(11), p. 110201 (2008). 12. Bender, C.M., Brody, D.C., and Muller, M.P. Hamiltonian for the zeros of the Riemann zeta function", Physical Review Letters, 118(13), p. 130201 (2017). X.-J. Yang/Scientia Iranica, Transactions A: Civil Engineering 26 (2019) 2167{2175 2175 13. Euler, L. Remarques sur un beau rapport entre les series des puissances tant directes que reciproques", Memoires de l'academie des Sciences de Berlin, 17, pp. 83-106 (1768). 14. Neukirch, J., Algebraic Number Theory, Springer, New York, USA (1999). 15. Hardy, G.H., Ramanujan: Twelve Lectures on Subjects Suggested by his Life and Work, Cambridge University Press, London (1940). 16. Titchmarsh, E.C., The Theory of the Riemann Zeta Function, 2nd Ed., Clarendon Press, New York (1987). 17. Yang, X.J., Baleanu, D., and Srivastava, H.M., Local Fractional Integral Transforms and Their Applications, Academic Press, London (2015). 18. Sarnak, P., Problems of the Millenium: The Riemann Hypothesis, Clay Mathematics Institute, New York, USA (2004). 19. Gelbart, S. and Miller, S. Riemann's zeta function and beyond", Bulletin of the American Mathematical Society, 41(1), pp. 59-112 (2004). 20. Tate, J.T. Fourier analysis in number _elds, and Hecke's zeta-functions, algebraic number theory", Proc. Instructional Conf., Brighton, 1965, pp. 305- 347, (Thompson, Washington DC (1967). 21. Edwards, H.M., Riemann's Zeta Function, Academic Press, New York, USA (1974).' 22. Sierra, G. On the quantum reconstruction of the Riemann zeros", Journal of Physics A: Mathematical and Theoretical, 41(30), 304041 (2008). 23. Taylor, P.R. On the Riemann zeta function", The Quarterly Journal of Mathematics, 16, pp. 1-21 (1945). 24. Hardy, G.H. and Littlewood, J.E. The zeros of Riemann's zeta-function on the critical line", Mathematische Zeitschrift, 10(3-4), pp. 283-317 (1921). 25. Levinson, N. More than one third of zeros of Riemann's zeta-function are on _ = 1=2", Advances in Mathematics, 13(4), pp. 383-436 (1974). 26. Conrey, J.B., Ghosh, A., and Gonek, S.M. Simple zeros of the Riemann zeta-function", Proceedings of the London Mathematical Society, 76(3), pp. 497-522 (1998). 27. Hardy, G.H. Sur les zeros de la fonction _ (s) de Riemann ", Comptes Rendus Mathematique Academie des Sciences, Paris, 158, pp. 1012-1014 (1914). 28. Van de Lune, J., te Riele, H.J., and Winter, D.T. On the zeros of the Riemann zeta function in the critical strip. IV", Mathematics of Computation, 46(174), pp. 667-681 (1986). 29. Jacobi, C.G.J., Fundamenta Nova Theoriae Functionum Ellipticarum, Regiomonti, Borntraeger, Konigsberg, Cambridge University Press, New York, USA (2012). 30. Siegel, C.L., Advanced Analytic Number Theory, Tata Institute of Fundamental Research, Bombay (1980). 31. Gonzalez, M., Classical Complex Analysis, CRC Press, London (1991). 32. Rudin, W., Real and Complex Analysis, McGraw-Hill, New York (1987). 33. Churchill, R. and James W.B.W., Complex Variables and Applications, McGraw-Hill, New York, USA (1984). 34. Landau, E., Handbuch der Lehre von der Verteilung der Primzahlen, Teubner, Leipzig (1909).