Fast and clean dielectric barrier discharge plasma functionalization of carbon nanotubes decorated by electrodeposited nickel oxide: Application to glucose biosensors

Document Type : Article

Authors

1 Catalysis and Nanostructured Laboratory, School of Chemical Engineering, University of Tehran, Tehran, Iran

2 Nanoelectronics Centre of Excellence, University of Tehran, Tehran, P.O. Box 11365-4563, Iran.

3 Department of Chemical Engineering, Hamedan University of Technology, Hamedan, 65155, Iran

Abstract

Multi-walled carbon nanotubes (MWCNTs) were functionalized using a dielectric barrier discharge plasma in presence of H2O-saturated air at 70˚C and atmospheric pressure. The functionalized MWCNTs (F-CNTs) were decorated with electrochemically deposited 10 nm NiO nanoparticles, followed by immobilization of glucose oxidase (GOx) and the modified electrode was utilized for electrochemical detection of glucose. TEM, FE-SEM, TPD and XPS techniques were used to characterize the NiO/F-CNTs samples. The maximum amount of oxygenated functional groups such as carbonyl, hydroxyl and carboxylic groups was formed at the plasma exposure time of 4 min. The optimum chronoamperometric deposition time of NiO was 3 min.
The presence of GOx on the NiO/F-CNTs electrode displayed a quasi-reversible and surface-controlled redox wave around −0.52 V with a peak to peak separation of 0.05 V. The GOx/NiO/F-CNTs electrode showed a linear performance in the range of 0.2-3.8 mM glucose with detection limit of 93.0 µM and sensitivity of 2.16 µA.mM−1.

Keywords

Main Subjects


1. Ren, J., Wang, Z., Yang, F., Ren, R.P., and Lv, Y.K. Freestanding 3D single-wall carbon nanotubes/WS2 nanosheets foams as ultra-long-life anodes for rechargeable lithium ion batteries", Electrochimica. Acta, 267, pp. 133-140 (2018). 2. Huang, J., Zhu, N., Yang, T., Zhang, T., Wu, P., and Dang, Z. Nickel oxide and carbon nanotube composite (NiO/CNT) as a novel cathode non-precious metal catalyst in microbial fuel cells", Biosens. Bioelectron., 72, pp. 332-339 (2015). 3. Amirian, M., Nabipour Chakoli, A., Cai, W., and Sui, J. E_ect of functionalized multiwalled carbon nanotubes on thermal stability of poly (L-LACTIDE) biodegradable polymer", Sci. Iran, 20, pp. 1023-1027 (2013). 4. Foroughi, M.R., Khoroushi, M., Nazem, R., and Akbarian Tefaghi, E. The e_ect of carbon nanotubes/ bioglass nanocomposite on mechanical and bioactivity properties of glass ionomer cement", Sci. Iran, 23, pp. 3123-3134 (2016). 5. Karbasi, S., Zarei, M., and Foroughi, M.R. E_ect of multi-wall carbon nanotubes (MWNTs) on structural and mechanical properties of poly(3-hydroxybutirate) electrospun sca_olds for tissue engineering applications", Sci. Iran, 23, pp. 3145-3152 (2016). 6. Si, P., Huang, Y., Wang, T., and Ma, J. Nanomaterials for electrochemical non-enzymatic glucose biosensors", RSC Adv., 3, pp. 3487-3502 (2013). 7. Liu, Y., Teng, H., Hou, H., and You, T. Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticle-loaded carbon nano_ber paste electrode", Biosens. Bioelectron., 24, pp. 3329-3334 (2009). 8. Qian, Q., Hu, Q., Li, L., Shi, P., Zhou, J., Kong, J., Zhang, X., Sun, G., and Huang, W. Sensitive _ber microelectrode made of nickel hydroxide nanosheets embedded in highly-aligned carbon nanotube sca_old for nonenzymatic glucose determination", Sens. Actuators, 257, pp. 23-28 (2018). 9. Barrio, M., Moros, M., Puertas, S., Fuente, J.M., Graz_u, V., Cebolla, V., Marcos, S., and Galb_an, J. Glucose oxidase immobilized on magnetic nanoparticles: Nanobiosensors for uorescent glucose monitoring", Microchim. Acta, 184, pp. 1325-1333 (2017). 10. Pang, Y., Huang, Z., Yang, Y., Long, Y, and Zheng, H. Colorimetric detection of glucose based on _cin with peroxidase-like activity", Spectrochim. Acta A Mol. Biomol. Spectrosc., 189, pp. 510-515 (2018). 11. Miwa, Y., Nishizawa, M., Matsue, T., and Uchida, I. A conductometric glucose sensor based on a twinmicroband electrode coated with a polyaniline thin _lm", Bull. Chem. Soc. Jpn., 67, pp. 2864-2866 (1994). 12. Vesali-Naseh, M., Khodadadi, A.A., Mortazavi, Y., Moosavi-Movahedi, A.A., and Ostrikov, K. H2O/air plasma-functionalized carbon nanotubes decorated with MnO2 for glucose sensing", RSC Adv., 6, pp. 31807-31815 (2016). 13. Mathew, M., and Sandhyarani, N. A highly sensitive electrochemical glucose sensor structuring with nickel hydroxide and enzyme glucose oxidase", Electrochim. Acta., 108, pp. 274-280 (2013). 14. Gao, F., Yin, J., Yao, Z., Li, M., and Wang, L. A nanocomposite modi_ed electrode: electrocatalytic properties and its sensing applications to hydrogen peroxide and glucose", J. Electrochem. Soc., 157, pp. F35-F39 (2010). 15. Gorgin Karaji, Z., Houshmand, B., Abbasi, S., and Faghihi, S. Electrochemical anodic oxidation process of porous titanium granules for biomedical applications", Sci. Iran, 22, pp. 2745-2751 (2015). 16. Vesali-Naseh, M., Khodadadi, A.A., Mortazavi, Y., Pourfayaz, F., Alizadeh, O., and Maghrebi, M. Fast and clean functionalization of carbon nanotubes by dielectric barrier discharge plasma in air compared to acid treatment", Carbon, 48, pp. 1369-1379 (2010). 17. Zhang, H., Li, H., Fang, M., Wang, Z., Sang, L., Yang, L., and Chen, Q. Roll-to-roll DBD plasma pretreated polyethylene web for enhancement of Al coating adhesion and barrier property", Appl. Surf. Sci., 388, pp. 539-545 (2015). 3904 A.A. Khodadadi et al./Scientia Iranica, Transactions F: Nanotechnology 26 (2019) 3896{3904 18. Abdi, M.H., Ibrahim, N.B., Baqiah, H., and Halim, S.A. Structural, electrical and magnetic characterization of nickel-doped tin oxide _lm by a sol-gel method", Sci. Iran, 21, pp. 2459-2467 (2014). 19. Li, C., Liu, Y., Li, L., Du, Z., Xu, S., Zhang, M., Yin, X., and Wang, T. A novel amperometric biosensor based on NiO hollow nanospheres for biosensing glucose", Talanta, 77, pp. 455-459 (2008). 20. Yao, M., Hu, Z., Xu, Z., Liu, Y., Liu, P., and Zhang, Q. High-performance electrode materials of hierarchical mesoporous nickel oxide ultrathin nanosheets derived from self-assembled scroll-like a-nickel hydroxide", J. Power Sour., 273, pp. 914-922 (2015). 21. Ammara, S., Shamaila, S., Zafar, N., Bokhari, A., and Sabah, A. Nonenzymatic glucose sensor with high performance electrodeposited nickel/copper/carbon nanotubes nanocomposite electrode", J. Phys. Chem. Solids., 120, pp. 12-19 (2019). 22. Ko, T.H., Seong, J.G., Radhakrishnan, S., Kwak, C.S., Khil, M.S., Kim, H.Y., and Kim, B.S. Dual functional nickel cobalt/MWCNT composite electrodebased electrochemical capacitor and enzymeless glucose biosensor applications: Inuence of Ni/Co molar ratio", J. Ind. Eng. Chem., 73, pp. 1-7 (2019). 23. Xu, J.J., Feng, J.J., Zhong, X., and Chen, H.Y. Low-potential detection of glucose with a biosensor based on the immobilization of glucose oxidase on polymer/manganese oxide layered nanocomposite", Electroanal., 20, pp. 507-512 (2008). 24. Chen, J., Kobayashi, F., Eguchi, K., and Waki, K. Understanding the redox reactions of adjacent carboxyl groups and anhydride groups following citric acid treatment of defect-containing multiwalled carbon nanotubes", Electrochem. Commun., 91, pp. 25-30 (2018). 25. Xu, T., Yang, J., Liu, J., and Fu, Q. Surface modi_cation of multi-walled carbon nanotubes by O2 plasma", Appl. Surf. Sci., 253, pp. 8945-89451 (2007). 26. Rosenthal, D., Ruta, M., Schlogl, R., and Kiwi- Combined XPS and TPD study of oxygenfunctionalized carbon nano_bers grown on sintered metal _bers", Carbon, 48, pp. 1835-1843 (2010). 27. Boehm, H.P. Surface oxides on carbon and their analysis: a critical assessment", Carbon, 40, pp. 145- 149 (2002). 28. Figueiredo, J.L. and Pereira, M.F. The role of surface chemistry in catalysis with carbons", Catal. Today, 150, pp. 2-7 (2010). 29. Tayyebi, A., Tavakoli, M.M., Outokesh, M., Sha_ekhani, and A., Simchi, A. Supercritical synthesis and characterization of graphene PbS Quantum dots composite with enhanced photovoltaic properties", Ind. Eng. Chem. Res., 54, pp. 7382-7392 (2015). 30. Hoa, L.T., Tien, H.N., Luan, V.H., Chung, J.S., and Hur, S.H. Fabrication of a novel 2D-graphene/2DNiO nanosheet-based hybrid nanostructure and its use in highly sensitive NO2 sensors", Sens. Actuators B, 185, pp. 701-705 (2013). 31. Mohammadi, F., Vesali-Naseh, M., Khodadadi A.A., and Mortazavi, Y. A comparison of a nanostructured enzymeless Au/Fe2O3/MWCNTs/GCE electrode and a GOx modi_ed one in electrocatalytic detection of glucose", Electroanalysis, 30, pp. 1-10 (2018). 32. Haghighi, N., Hallaj, R., and Salimi, A. Immobilization of glucose oxidase onto a novel platform based on modi_ed TiO2 and graphene oxide, direct electrochemistry, catalytic and photocatalytic activity", Mater. Sci. Eng. C., 73, pp. 417-424 (2017). 33. Li, F., Song, J., Li, F., Wang, X., Zhang, Q., Han, D., Ivaska, A., and Niu, L. Direct electrochemistry of glucose oxidase and biosensing for glucose based on carbon nanotubes@SnO2-Au composite", Biosens. Bioelectron., 25, pp. 883-888 (2009). 34. Salimi, A., Shari_, E., Noorbakhsh, A., and Soltanian, S. Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: Direct electron transfer and electrocatalytic activity", Biosens. Bioelectron., 22, pp. 3146-3153 (2007