Analysis of laminated composite plates based on THB-RKPM method using the higher order shear deformation plate theory

Document Type : Article

Authors

Department of Civil Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

10.24200/sci.2019.21417

Abstract

In the present investigation, static, free vibration and buckling response of laminated composite plates based on the coupling of truncated hierarchical B-splines (THB-splines) and reproducing kernel particle method (RKPM) within higher order shear deformation plate theory are presented. The coupled THB-RKPM method blends the advantages of the isogeometric analysis and meshfree methods. Since under certain conditions, the isogeometric B-spline and NURBS basis functions are exactly represented by reproducing kernel meshfree shape functions, recursive process of producing isogeometric bases can be omitted. More importantly, a seamless link between meshfree methods and isogeometric analysis can be easily defined which provide an authentic meshfree approach to refine the model locally in isogeometric analysis. This procedure can be accomplished using truncated hierarchical B-splines to construct new bases and adaptively refine them. It is shown that THB-RKPM method is ideally appropriate for local refinement of laminated composite plates in the framework of isogeometric analysis. The flexibility of the proposed method for refining basis functions leads to decrease the computational cost without losing the accuracy of the solution. Numerical examples considering different boundary conditions, various aspect ratios, stiffness ratios and fiber orientations demonstrate validity and versatility of the proposed method.

Keywords


1. Dimitri, R., Fantuzzi, N., Li, Y., and Tornabene, F. Numerical computation of the crack development and SIF in composite materials with XFEM and SFEM", Composite Structures, 160, pp. 468-490 (2017). 2. Liu, B., Huang, L., Kaveendran, B., Geng, L., Cui, X., Wei, S., and Yin, F. Tensile and bending behaviors and characteristics of laminated Ti-(TiBw/Ti) composites with di_erent interface status", Composites Part B: Engineering, 108, pp. 377-385 (2017). 3. Monti, A., El Mahi, A., Jendli, Z., and Guillaumat, L. Experimental and _nite elements analysis of the vibration behaviour of a bio-based composite sandwich beam", Composites Part B: Engineering, 110, pp. 466- 475 (2017). 4. Jari, H., Atri, H., and Shojaee, S. Nonlinear thermal analysis of functionally graded material plates using a NURBS based isogeometric approach", Composite Structures, 119, pp. 333-345 (2015). 5. Behjat, B., Salehi, M., Armin, A., Sadighi, M., and Abbasi, M. Static and dynamic analysis of functionally graded piezoelectric plates under mechanical and electrical loading", Scientia Iranica, 18, pp. 986-994 (2011). 6. Alashti, R.A., Khorsand, M., and Tarahhomi, M. Thermo-elastic analysis of a functionally graded spherical shell with piezoelectric layers by di_erential quadrature method", Scientia Iranica, 20, pp. 109-119 (2013). 7. Carrera, E., Brischetto, S., and Nali, P., Plates and Shells for Smart Structures: Classical and Advanced Theories for Modeling and Analysis, John Wiley & Sons (2011). 8. Carrera, E., Cinefra, M., and Li, G. Re_ned _nite element solutions for anisotropic laminated plates", Composite Structures, 183, pp. 63-76 (2018). 9. Reddy, J.N., Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press (2004). 10. Hughes, T.J., Cottrell, J.A., and Bazilevs, Y. Isogeometric analysis: CAD, _nite elements, NURBS, exact geometry and mesh re_nement", Computer Methods in Applied Mechanics and Engineering, 194, pp. 4135- 4195 (2005). 11. Guo, Y. and Ruess, M. A layerwise isogeometric approach for NURBS-derived laminate composite shells", Composite Structures, 124, pp. 300-309 (2015). 12. Natarajan, S., Ferreira, A., and Nguyen-Xuan, H. Analysis of cross-ply laminated plates using isogeometric analysis and uni_ed formulation", Curved Layer. Struct., 1, pp. 1-10 (2014). 13. Thai, C.H., Ferreira, A., Carrera, E., and Nguyen- Xuan, H. Isogeometric analysis of laminated composite and sandwich plates using a layerwise deformation theory", Composite Structures, 104, pp. 196-214 (2013). 14. Thai, C.H., Nguyen-Xuan, H., Bordas, S.P.A., Nguyen-Thanh, N., and Rabczuk, T. Isogeometric analysis of laminated composite plates using the higher-order shear deformation theory", Mechanics of Advanced Materials and Structures, 22, pp. 451-469 (2015). 15. Sederberg, T.W., Cardon, D.L., Finnigan, G.T., North, N.S., Zheng, J., and Lyche, T. T-spline simpli- _cation and local re_nement", ACM Transactions on Graphics (TOG), 23, pp. 276-283 (2004). 16. Forsey, D.R. and Bartels, R.H. Hierarchical B-spline re_nement", ACM Siggraph Computer Graphics, 22, pp. 205-212 (1988). H.R. Atri and S. Shojaee/Scientia Iranica, Transactions A: Civil Engineering 26 (2019) 2057{2078 2077 17. Li, X., Deng, J., and Chen, F. Surface modeling with polynomial splines over hierarchical T-meshes", The Visual Computer, 23, pp. 1027-1033 (2007). 18. Dokken, T., Lyche, T., and Pettersen, K.F. Polynomial splines over locally re_ned box-partitions", Computer Aided Geometric Design, 30, pp. 331-356 (2013). 19. Giannelli, C., Juttler, B., Kleiss, S.K., Mantzaaris, A., Simeon, B., and _Speh, J. THB-splines: An e_ective mathematical technology for adaptive re_nement in geometric design and isogeometric analysis", Computer Methods in Applied Mechanics and Engineering, 299, pp. 337-365 (2016). 20. Li, X., Zheng, J., Sederberg, T.W., Hughes, T.J., and Scott, M.A. On linear independence of T-spline blending functions", Computer Aided Geometric Design, 29, pp. 63-76 (2012). 21. Scott, M., Li, X., Sederberg, T., and Hughes, T. Local re_nement of analysis-suitable T-splines", Computer Methods in Applied Mechanics and Engineering, 213, pp. 206-222 (2012). 22. Bressan, A. and Juttler, B. A hierarchical construction of LR meshes in 2D", Computer Aided Geometric Design, 37, pp. 9-24 (2015). 23. Johannessen, K.A., Kvamsdal, T., and Dokken, T. Isogeometric analysis using LR B-splines", Computer Methods in Applied Mechanics and Engineering, 269, pp. 471-514 (2014). 24. Kraft, R., Adaptive and Linearly Independent Multilevel B-Splines, SFB 404, Geschaftsstelle (1997). 25. Bui, T.Q., Nguyen, M.N., and Zhang, C. An e_cient meshfree method for vibration analysis of laminated composite plates", Computational Mechanics, 48, pp. 175-193 (2011). 26. Somireddy, M. and Rajagopal, A. Meshless natural neighbor Galerkin method for the bending and vibration analysis of composite plates", Composite Structures, 111, pp. 138-146 (2014). 27. Rosolen, A. and Arroyo, M. Blending isogeometric analysis and local maximum entropy meshfree approximants", Computer Methods in Applied Mechanics and Engineering, 264, pp. 95-107 (2013). 28. Valizadeh, N., Bazilevs, Y., Chen, J., and Rabczuk, T. A coupled IGA-Meshfree discretization of arbitrary order of accuracy and without global geometry parameterization", Computer Methods in Applied Mechanics and Engineering, 293, pp. 20-37 (2015). 29. Sambridge, M., Braun, J., and Mcqueen, H. Geophysical parametrization and interpolation of irregular data using natural neighbours", Geophysical Journal International, 122, pp. 837-857 (1995). 30. Gonz_alez, D., Cueto, E., and Doblar_e, M. Higherorder natural element methods: Towards an isogeometric meshless method", International Journal for Numerical Methods in Engineering, 74, pp. 1928-1954 (2008). 31. Zhang, H. and Wang, D. Reproducing kernel formulation of B-spline and NURBS basis functions: A meshfree local re_nement strategy for isogeometric analysis", Computer Methods in Applied Mechanics and Engineering, 320, pp. 474-508 (2017). 32. Chi, S.-W. and Lin, S.-P. Meshfree analysis with the aid of NURBS boundary", Computational Mechanics, 58, pp. 371-389 (2016). 33. Atri, H. and Shojaee, S. Meshfree truncated hierarchical re_nement for isogeometric analysis", Computational Mechanics, 62, pp. 1583-1597 (2018). 34. Piegl, L. and Tiller, W., The NURBS Book, Springer Science & Business Media (2012). 35. Faraji, S., Kolahdoozan, M., and Afshar, M. Collocated Mixed Discrete Least Squares Meshless (CMDLSM) method for solving quadratic partial differential equations", Scientia Iranica, 25, pp. 2000- 2011 (2018). 36. Reddy, J.N. A simple higher-order theory for laminated composite plates", Journal of Applied Mechanics, 51, pp. 745-752 (1984). 37. Faraji, S., Kolahdoozan, M., and Afshar, M. Mixed discrete least squares meshless method for solving the linear and non-linear propagation problems", Scientia Iranica, 25, pp. 565-578 (2018). 38. Roque, C., Cunha, D., Shu, C., and Ferreira, A. A local radial basis functions-_nite di_erences technique for the analysis of composite plates", Engineering Analysis with Boundary Elements, 35, pp. 363-374 (2011). 39. Reddy, J.N., An Introduction to the Finite Element Method, McGraw-Hill, New York (1993). 40. Reddy, J., Energy and Variational Methods in Applied Mechanics, 1984, Springer Science, and Business Media (2000). 41. Liew, K., Wang, J., Ng, T., and Tan, M. Free vibration and buckling analyses of shear-deformable plates based on FSDT meshfree method", Journal of Sound and Vibration, 276, pp. 997-1017 (2004). 42. Ferreira, A., Roque, C., Neves, A., Jorge, R., Soares, C., and Liew, K.M. Buckling and vibration analysis of isotropic and laminated plates by radial basis functions", Composites Part B: Engineering, 42, pp. 592-606 (2011). 43. Liew, K.-M., Xiang, Y., Kitipornchai, S., and Wang, C., Vibration of Mindlin Plates: Programming the pversion Ritz Method, Elsevier (1998). 44. Kitipornchai, S., Xiang, Y., Wang, C., and Liew, K. Buckling of thick skew plates", International Journal for Numerical Methods in Engineering, 36, pp. 1299- 1310 (1993). 45. Belinha, J. and Dinis, L. Analysis of plates and laminates using the element-free Galerkin method", Computers & Structures, 84, pp. 1547-1559 (2006). 2078 H.R. Atri and S. Shojaee/Scientia Iranica, Transactions A: Civil Engineering 26 (2019) 2057{2078 46. Xiao, J., Gilhooley, D., Batra, R., Gillespie, J., and Mccarthy, M. Analysis of thick composite laminates using a higher-order shear and normal deformable plate theory (HOSNDPT) and a meshless method", Composites Part B: Engineering, 39, pp. 414-427 (2008). 47. Reddy, J.N., Mechanics of Laminated Composite Plates: Theory and Analysis, CRC press (1997). 48. Chen, X., Liu, G., and Lim, S. An element free Galerkin method for the free vibration analysis of composite laminates of complicated shape", Composite Structures, 59, pp. 279-289 (2003). 49. Thai, C.H., Ferreira, A., Wahab, M.A., and Nguyen- Xuan, H. A generalized layerwise higher-order shear deformation theory for laminated composite and sandwich plates based on isogeometric analysis", Acta Mechanica, 227, pp. 1225-1250 (2016). 50. Kiendl, J., Bazilevs, Y., Hsu, M.-C., Wuchner, R., and Bletzinger, K.-U. The bending strip method for isogeometric analysis of Kirchho_|Love shell structures comprised of multiple patches", Computer Methods in Applied Mechanics and Engineering, 199, pp. 2403- 2416 (2010). 51. Noor, A.K. and Mathers, M.D., Shear-Flexible Finite- Element Models of Laminated Composite Plates and Shells, National Aeronautics and Space Administration Hampton Va Langley Research Center (1975). 52. Liu, L., Chua, L., and Ghista, D. Mesh-free radial basis function method for static, free vibration and buckling analysis of shear deformable composite laminates", Composite Structures, 78, pp. 58-69 (2007). 53. Phan, N. and Reddy, J. Analysis of laminated composite plates using a higher-order shear deformation theory", International Journal for Numerical Methods in Engineering, 21, pp. 2201-2219 (1985). 54. Khdeir, A. and Librescu, L. Analysis of symmetric cross-ply laminated elastic plates using a higher-order theory: Part II-Buckling and free vibration", Composite Structures, 9, pp. 259-277 (1988). 55. Shojaee, S., Valizadeh, N., Izadpanah, E., Bui, T., and Vu, T.-V. Free vibration and buckling analysis of laminated composite plates using the NURBSbased isogeometric _nite element method", Composite Structures, 94, pp. 1677-1693 (2012). 56. Chakrabarti, A. and Sheikh, A. Buckling of laminated composite plates by a new element based on higher order shear deformation theory", Mechanics of Advanced Materials and Structures, 10, pp. 303-317 (2003). 57. Nguyen-Van, H., Mai-Duy, N., Karunasena, W., and Tran-Cong, T. Buckling and vibration analysis of laminated composite plate/shell structures via a smoothed quadrilateral at shell element with in-plane rotations", Computers & Structures, 89, pp. 612-625 (2011). 58. Reddy, J. and Phan, N. Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory", Journal of Sound and Vibration, 98, pp. 157-170 (1985). 59. Fares, M. and Zenkour, A. Buckling and free vibration of non-homogeneous composite cross-ply laminated plates with various plate theories", Composite Structures, 44, pp. 279-287 (1999).