Estimation of solar energy generation in an 80 kW station in Kabudrahang, Iran: A comparative study

Document Type : Article


1 Faculty of Electrical and Computer Engineering, University of Birjand, Birjand, Iran

2 Faculty of Electrical Engineering, Shahid Beheshti University, A.C., Tehran, Iran

3 Department of Electrical and Computer Engineering, Ohio State University, Ohio, USA


Estimation of solar energy generation in the integrated power systems must be performed for power system the long-term planning and the short-term control. Irradiation is one of the main factors affecting the out coming energy of solar system. Hence, investigation of solar irradiation on the horizontal surface helps in proper and efficient implementation of solar energy system. Capturing much more energy from the irradiation, by the Photovoltaic (PV) cells, results in enhancement of out coming energy of PV station. This paper is going to study the impact of implementation two topologies for energy harvesting in PV stations. The topologies are as follows: (a) PV station with multilevel boost converters and inverters, (b) PV station with only multilevel inverters. Studies have been performed on 80 KW PV test station, located in Kabudrahang, Iran. The comparison between the results demonstrates much more solar energy harvesting in the case of applying multilevel converters in the output of PV arrays. Simulation results show the promising result of the proposed topology in harvesting maximum power from a PV station.


Main Subjects


[1] Khosrogorji, S.; Ghari, H.; Torkaman, H., “Optimal Sizing of Hybrid WT/PV/Diesel Generator/Battery System using MINLP Method for a Region in Kerman”, J Scientia Iranica, DOI: 10.24200/SCI.2019.50176.1555, (2019).
[2] E. Scolari, F. Sossan, M. Paolone, “Photovoltaic Model-Based Solar Irradiance Estimators: Performance Comparison and Application to Maximum Power Forecasting”, IEEE Trans. on Sustainable Energy, 9 (1) (2018) 35-44.
[3] O. L- Lapeña, M. T. Penella, and M. Gasulla, “A new MPPT method for low-power solar energy harvesting”, IEEE Trans. Ind. Electron., 57 (9) (2010) 3129–3138.
[4] L. Piegari and R. Rizzo, “Adaptive Perturb and Observe Algorithm for Photovoltaic Maximum Power Point Tracking”, IET Renew. Power Gener., 4 (4) (2010) 317–328.
[5] F. Sossan, A. M. Kosek, S. Martinenas, M. Marinelli, and H. W. Bindner, “Scheduling of Domestic Water Heater Power Demand for Maximizing PV Self-Consumption Using Model Predictive Control”, IEEE International Conference on Innovative Smart Grid Technologies (ISGT), Lyngby, 2013, 1-5.
[6] R. Luthander, J. Wid´en, D. Nilsson, and J. Palm, “Photovoltaic Self- Consumption in Buildings: A review”, Applied Energy, 142 (2015) 80-94.
[7] A. Chatterjee, A. Keyhani, D. Kapoor, “Identification of Photovoltaic Source Model”, IEEE Trans. Energy. Conv., 26 (3) (2011) 883-889.
[8] A. Ghaedi, A. Abbaspour, M. Fotuhi-Firuzabad, M. Parvania, “Incorporating Large Photovoltaic Farms in Power Generation System Adequacy Assessment”, J Sci Iran, 21(3) (2014) 924-934.
[9] T. Markvart, “Solar Electricity”, West Sussex, England: Wiley, 1994, pp. 11-16.
[10] S. Salcedo- Sanz, C. Casanova- Mateo, J. Munoz- Mari, G. Camps- Valls, “Prediction of Daily Global Solar Irradiation Using Temporal Gaussian Processes”, IEEE Geoscience and Remote Sensing Letters, 11 (11) (2014) 1936-1940.
[11] A. Avila, P. R. Vizcaya, R. Diez, “Daily Irradiance Test Signal for Photovoltaic Systems by Selection from Long-term Data”, Renewable Energy, 131 (2019) 755-762.
[12] A. Laudani, F. R. Fulginei, A. Salvini, M. Carrasco, and F. Mancilla- David, “A Fast and Effective Procedure for Sensing Solar Irradiance in Photovoltaic Arrays”, IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), Florence, 2016, 1–4.
[13] M. Carrasco, F. Mancilla-David, and R. Ortega, “An Estimator of Solar Irradiance in Photovoltaic Arrays with Guaranteed Stability Properties”, IEEE Transactions on Industrial Electronics, 61 (7) (2014) 3359–3366.
[14] L. Benali, G. Notton, A. Fouilloy, C. Voyant, R. Dizene, “Solar Radiation Forecasting using Artificial Neural Network and Random Forest Methods: Application to Normal Beam, Horizontal Diffuse and Global Components”, Renewable Energy, 132 (2019) 871-884.
[15] V. L. Vigni, D. L. Manna, E. R. Sanseverino, V. di Dio, P. Romano, P. di Buono, M. Pinto, R. Miceli, and C. Giaconia, “Proof of Concept of an Irradiance Estimation System for Reconfigurable Photovoltaic Arrays”, Energies, 8 (7) (2015) 6641–6657.
[16] H. Zang, L. Cheng, T. Ding, K. W. Cheung, M. Wang, Z. Wei, G. Sun, “Estimation and Validation of Daily Global Solar Radiation by Day of The Year-Based Models for Different Climates in China”, Renewable Energy, 135 (2019) 984-1003.
[17] C. Koo, W. Li, S. H. Cha, S. Zhang, “A Novel Estimation Approach for the Solar Radiation Potential with Its Complex Spatial Pattern via Machine-Learning Techniques”, Renewable Energy, 133 (2019) 575-592.
[18] J. A. Gow and C. D. Manning, “Development of a Photovoltaic Arrays Model for Use in Power-Electronics Simulation Studies”, in IEE Proc. Electric Power Appl., 146 (2) (1999) 193–200.
[19] M. R. Banaei, H. Ardi, R. Alizadeh, A. Farakhor, “Non-isolated multi-input–single-output DC/DC converter for photovoltaic power generation systems”, IET Power Electron.,7 (11) (2014) 2806–2816.
[20] F. Hamzeh Aghdam, M. Abapour, “Reliability and Cost Analysis of Multistage Boost Converters Connected to PV Panels”, IEEE Journal of Photovoltaics, 6 (4) (2016) 981-989.
[21] J. Kumar, A. Agarwal, V. Agarwal, “A Review on Overall Control of DC Microgrids”, Journal of Energy Storage, 21 (2019) 113-138.
[22] J. C. Camilo, T. Guedes, D. A. Fernandes, J. D. Melo, F. F. Costa, A. J. Sguarezi Filho, “A  Maximum Power Point Tracking for Photovoltaic Systems based on Monod Equation”, Renewable Energy, 130 (2019) 428-438.
[23] F. Z. Zerhouni, M. H. Zerhouni, M. Zegrar, M. T. Benmessaoud, A. Tilmatine, A. Boudghene Stambouli, “Modelling Polycristallin Photovoltaic Cells using Design of Experiments”,  J Sci Iran, 21(6) (2014) 2273-2279.
[24] P. P. Biswas, P.N. Suganthan, G. Wu, Gehan A.J. Amaratunga, “Parameter Estimation of Solar Cells Using Datasheet Information with The Application of an Adaptive Differential Evolution Algorithm”, Renewable Energy, 132 (2019) 425-438.
[25] A. Ayang, R. Wamkeue, M. Ouhrouche, N. Djongyang, N. E. Salom, J. K. Pombe, G. Ekemb, “Maximum Likelihood Parameters Estimation of Single-Diode Model of Photovoltaic Generator”, Renewable Energy, 130 (2019) 111-121.
[26] D. Sera, R. Teodorescu, and P. Rodriguez, “PV panel model based on datasheet values”, in Proc. IEEE Int. Symp. Electron., Vigo, (2007) 2392–2396.
[27] M. H. Rashid, “Power Electronics Handbook”, Academic Press (2001)
[28] A. Amir, A. Amir, H. S. Che, A. El Khateb, Nas. A. Rahim, “Comparative Analysis of High Voltage Gain DC-DC Converter Topologies for Photovoltaic Systems”, Renewable Energy, in press (2019), DOI: 10.1016/j.renene.2018.09.089.
[29] S. Liu, J. Liu, H. Mao, and Y. Zhang, “Analysis of Operating Modes and Output Voltage Ripple of Boost DC-DC Converters and Its Design Considerations”, IEEE Trans. Power Electronics, 23 (4), 2008, 1813–1821.
[30] M. Iqbal, “An Introduction to Solar Radiation”, New York: Academic Press (1983) 1–84.
[31] C. Frohlich, and R. W. Brusa, Solar radiation and its variation in time, Sol. Phys. 74, pp. 209 – 215, 1981.
[32] J. A. Duffie, and W. A. Beckman, Solar Engineering of Thermal Processes, New York, Wiley, 1980.
[33] P. I. Cooper, The Absorption of Solar Radiation in Solar Stills, Sol. Energy 12 (3), 333 – 346, 1969.
[34] M.A. Danandeh, S.M. Mousavi G., “Solar Irradiance Estimation Models and Optimum Tilt Angle Approaches: A Comparative Study”, Renewable and Sustainable Energy Reviews, 92 (2019) 319-330.