Novel aspects of Soret and Dufour in entropy generation minimization for Williamson fluid flow

Document Type : Article

Authors

1 Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan.; Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

2 Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan.

3 Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

Abstract

Soret and Dufour effects on MHD flow of Williamson fluid between two rotating disks are examined. Impacts of stratification, viscous dissipation and activation energy are also considered. Bejan number and entropy generation for stratified flow is discussed. The governing PDE's are converted into ODE's by using Von Kármán transformations. Convergent solution of complicated ODE's is found by homotopic procedure. The results of physical quantities are discussed through plots and numerical values. It is noted that axial and radial velocities are more for greater Weissenberg number. Temperature and concentration profiles are decreasing functions of thermal and solutal stratification parameters respectively. Entropy and Bejan number show the opposite trends for higher Weissenberg number and Brinkman number.

Keywords

Main Subjects


1. Williamson, R.V. The ow of pseudoplastic materials", Indust. Eng. Chem., 21, pp. 1108{1111 (1929). 2. Nadeem, S., Hussain, S.T., and Lee, C. Flow of a Williamson uid over a stretching sheet", Brazilian J. Chem. Eng., 30, pp. 619{625 (2013). 3. Zehra I., Yousaf, M.M., and Nadeem, S. Numerical solutions of Williamson uid with pressure dependent viscosity", Results in Physics, 5, pp. 20{25 (2015). 4. Khan, M.I., Khan, T.A., Hayat, T., et al. Irreversibility analysis and heat transfer performance of Williamson nanouid over a stretched surface", Heat Transfer Research, 50(9) (2018). DOI: 10.1615/Heat- TransRes.2018026342 5. Qayyum, S., Khan, M.I., Hayat, T., et al. Entropy generation in dissipative ow of Williamson uid between two rotating disks", Int. J. Heat Mass Transf., 127, pp. 933{942 (2018). 6. Hsiao, K. To promote radiation electrical MHD activation energy thermal extrusion manufacturing system e_ciency by using Carreau-nanouid with parameters control method", Energy, 130, pp. 486{499 (2017). 7. Hsiao, K. Combined electrical MHD heat transfer thermal extrusion system using Maxwell uid with radiative and viscous dissipation e_ects", Appl. Thermal Eng., 112, pp. 1281{1288 (2017). 8. Hsiao, K. Micropolar nanouid ow with MHD and viscous dissipation e_ects towards a stretching sheet with multimedia feature", Int. J. Heat Mass Transf., 112, pp. 983{990 (2017). 9. Hayat, T., Farooq, S., and Ahmad, B. Impact of compliant walls on magneto hydrodynamics peristalsis of Je_rey material in a curved con_guration", Sci. Iranica, 25, pp. 741{750 (2018). 10. Hsiao, K. Stagnation electrical MHD nanouid mixed convection with slip boundary on a stretching sheet", Appl. Thermal Eng., 98, pp. 850{861 (2016). T. Hayat et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 2451{2464 2463 11. K_arm_an, T.V. Uber laminare and turbulente Reibung", ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift fur Angewandte Mathematik und Mechanik, 1, pp. 233{252 (1921). 12. Hayat, T., Qayyum, S., Imtiaz, M., and Alsaedi, A. Radiative ow due to stretchable rotating disk with variable thickness", Results Phys., 7, pp. 156{165 (2017). 13. Khan, N.A., Aziz, S., and Khan, N.A. MHD ow of Powell{Eyring uid over a rotating disk", J. Taiwan Inst. Chem. Eng., 45, pp. 2859{2867 (2014). 14. Doh, D.H. and Muthtamilselvan, M. Thermophoretic particle deposition on magnetohydrodynamic ow of micropolar uid due to a rotating disk", Int. J. Mech. Sci., 130, pp. 350{359 (2017). 15. Khan, N.A., Aziz, S., and Khan, N.A. Numerical simulation for the unsteady MHD ow and heat transfer of couple stress uid over a rotating disk", Plos One, 9, e95423 (2014). 16. Gri_ths, P.T., Stephen, S.O., Bassom, A.P., et al. Stability of the boundary layer on a rotating disk for power-law uids", J. Non-Newtonian Fluid Mech., 207, pp. 1{6 (2014). 17. Qayyum, S., Khan, M.I., Hayat, T., et al. Entropy generation in dissipative ow of Williamson uid between two rotating disks", Int. J. Heat Mass Transf., 127, pp. 933{942 (2018). 18. Bestman, A.R. Natural convection boundary layer with suction and mass transfer in a porous medium", Int. J. Eng. Research, 14, pp. 389{396 (1990). 19. Makinde, O.D., Olanrewaju, P.O., and Charles, W.M. Unsteady convection with chemical reaction and radiative heat transfer past a at porous plate moving through a binary mixture", Afrika Matematika, 22, pp. 65{78 (2011). 20. Awad, F.G., Motsa, S., and Khumalo, M. Heat and mass transfer ow in unsteady rotating uid ow with binary chemical reaction and activation energy", Plos One, 9(9), e107622 (2014). 21. Sha_que, Z., Mustafa, M., and Mushtaq, A. Boundary layer ow of Maxwell uid in rotating frame with binary chemical reaction and activation energy", Results Phys., 6, pp. 627{633 (2016). 22. Bejan, A. A study of entropy generation in fundamental convective heat transfer", J. Heat Transf., 101 pp. 718{725 (1979). 23. Amani, E. and Nobari, M.R.H. A numerical investigation of entropy generation in the entrance region of curved pipes at constant wall temperature", Energy, 36, pp. 4909{4918 (2011). 24. Hayat, T., Ra_q, M., Ahmad, B., and Asghar, S. Entropy generation analysis for peristaltic ow of nanoparticles in a rotating frame", Int. J. of Heat Mass Transf., 108, pp. 1775{1786 (2017). 25. Shit, G.C., Haldar, R., and Mandal, S. Entropy generation on MHD ow and convective heat transfer in a porous medium of exponentially stretching surface saturated by nanouids", Adv. Powder Technol., 28, pp. 519{1530 (2017). 26. Afridi, M.I. and Qasim, M. Entropy generation and heat transfer in boundary layer ow over a thin needle moving in a parallel stream in the presence of nonlinear Rosseland radiation", Int. J. Thermal Sci., 123, pp. 117{128 (2018). 27. Govindaraju, M., Ganesh, N.V., Ganga, B., et al. Entropy generation analysis of magneto hydrodynamic ow of a nanouid over a stretching sheet", J. Egyp. Math. Soci., 23, pp. 429{434 (2015). 28. Hayat, T., Nawaz, S., and Alsaedi, A. Entropy generation in peristalsis with di_erent shapes of nanomaterial", J. Mol. Liq., 248, pp. 447{458 (2017). 29. Hayat, T., Khan, M.I., Qayyum, S., et al. Entropy generation in ow with silver and copper nanoparticles", Colloids Surfaces: A Physicochemical Eng. Aspects, 539, pp. 335{346 (2018). 30. Rezaie, N.Z., Darasi, S.R.D., Zarandi, M.H.F., et al. Generalized heat transfer and entropy generation of strati_ed air-water ow in entrance of a mini-channel", Sci. Iranica, 24 pp. 2407{2417 (2017). 31. Liao, S.J., Homotopy Analysis Method in Nonlinear Di_erential Equations., Springer, Heidelberg, Germany (2012). 32. Hayat, T., Khan, M.I., Farooq, M., et al. Stagnation point ow with Cattaneo-Christov heat ux and homogeneous{heterogeneous reactions", J. Mol. Liq., 220, pp. 49{55 (2016). 33. Sheikholeslami, M., Hatami, M., and Ganji, D.D. Micropolar uid ow and heat transfer in a permeable channel using analytical method", J. Mol. Liq., 194, pp. 30{36 (2014). 34. Hayat, T., Khan, M.I., Farooq, M., et al. Impact of Cattaneo{Christov heat ux model in ow of variable thermal conductivity uid over a variable thicked surface", Int. J. Heat Mass Transf., 99, pp. 702{710 (2016). 35. Sui, J., Zheng, L., Zhang, X., et al. Mixed convection heat transfer in power law uids over a moving conveyor along an inclined plate", Int. J. Heat Mass Transf., 85, pp. 1023{1033 (2015). 36. Hayat, T., Khan, M.I., Qayyum, S., et al. Modern developments about statistical declaration and probable error for skin friction and Nusselt number with copper and silver nanoparticles", Chin. J. Phys., 55, pp. 2501{2513 (2017). 37. Turkyilmazoglu, M. Convergence accelerating in the homotopy analysis method: A new approach", Adv. Appl. Math. Mech., 10(4), pp. 925{947 (2018). 2464 T. Hayat et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 2451{2464 38. Hayat, T., Qayyum, S., Imtiaz, M., et al. Impact of Cattaneo-Christov heat ux in Je_rey uid ow with homogeneous-heterogeneous reactions", Plos One, 11e, e0148662 (2016). 39. Hayat, T., Khan, M.I., Qayyum, S., et al. Entropy generation in magneto hydrodynamic radiative ow due to rotating disk in presence of viscous dissipation and Joule heating", Phys. Fluids, 30, 017101 (2018). 40. Turkyilmazoglu, M. Parametrized adomian decomposition method with optimum convergence", Trans. Modelling Comp. Simul., 27(4), pp. 1{22 (2017). DOI: 10.1145/3106373 41. Turkyilmazoglu, M. Determination of the correct range of physical parameters in the approximate analytical solutions of nonlinear equations using the adomian decomposition method", Mediterranean J. Mathem., 13, pp. 4019{4037 (2016). 42. Khan, M.I., Qayyum, S., Hayat, T., et al. Entropy generation minimization and statistical declaration with probable error for skin friction coe_cient and Nusselt number", Chin. J. Phys., 56, pp. 1525{1546 (2018).