Modeling vibrational behavior of silicon nanowires using accelerated molecular dynamics simulations

Document Type : Research Note

Authors

Computational Nano-mechanics Laboratory, Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran

Abstract

The classical methods utilized for modeling the nano-scale systems are not practical because of the enlarged surface effects that appear at small dimensions. Contrarily, implementing more accurate methods results in prolonged computations as these methods are highly dependent on quantum and atomistic models and they can be employed for very small sizes in brief time periods. In order to speed up the molecular dynamics (MD) simulations of the silicon structures, coarse-graining (CG) models are put forward in this research. The procedure consists of establishing a map between the main structure’s atoms and the beads comprising the CG model and modifying the systems parameters such that the original and the CG models reach identical physical parameters. The accuracy and speed of this model is investigated by carrying out various static and dynamic simulations and assessing the effect of size. The simulations show that for a nanowire with thickness over 10a, where parameter a is the lattice constant of diamond structure, the Young modulus obtained by CG and MD models differs less than 5 percent. The results also show that the corresponding CG model behaves 190 time faster compared to the AA model.

Keywords

Main Subjects


References
1. Keikhaie, M., Movahhedy, M.R., Akbari, J., et al. Numerical
study of material properties, residual stress
and crack development in sintered silver nano-layers
on silicon substrate", Scientia Iranica, Transactions
B, Mechanical Engineering, 23(3), p. 1037 (2016).
2. Derakhshi, M. and Fathi, D. Terahertz plasmonic
switch based on periodic array of graphene/silicon",
Scientia Iranica, 24(6), pp. 3452{3457 (2017).
3. Miandoab, E.M., Youse -Koma, A., and Pishkenari,
H.N. Nonlocal and strain gradient-based model for
electrostatically actuated silicon nano-beams", Microsystem
Technologies, 21(2), pp. 457{464 (2015).
4. Miandoab, E.M., Youse -Koma, A., and Pishkenari,
H.N. Polysilicon nanobeam model based on strain
gradient theory", Mechanics Research Communications,
62, pp. 83{88 (2014).
5. Miandoab, E.M., Pishkenari, H.N., Youse -Koma,
A., et al. Polysilicon nano-beam model based on
modi ed couple stress and Eringen's nonlocal elasticity
theories", Physica E: Low-dimensional Systems and
Nanostructures, 63, pp. 223{228 (2014).
6. Wu, H.A., Liu, G.R., Han, X., et al. An atomistic simulation
method combining molecular dynamics with
nite element technique", Chaos, Solitons & Fractals,
30(4), pp. 791{796 (2006).
7. Shityakov, S. and Dandekar, T. Molecular dynamics
simulation of popc and pope lipid membrane bilayers
enforced by an intercalated single-wall carbon nanotube",
Nano, 6(1), pp. 19{29 (2011).
8. Phadikar, J.K. and Pradhan, S.C. Variational formulation
and nite element analysis for nonlocal elastic
nanobeams and nanoplates", Computational Materials
Science, 49(3), pp. 492{499 (2010).
9. Mendez, J.P., Ponga, M., and Ortiz, M. Di usive
molecular dynamics simulations of lithiation of silicon
nanopillars", Journal of the Mechanics and Physics of
Solids, 115, pp. 123{141 (2018).
10. Pishkenari, H.N., Mohagheghian, E., and Rasouli, A.
Molecular dynamics study of the thermal expansion
coecient of silicon", Physics Letters A., 380(48), pp.
4039{4043 (2016).
11. Pishkenari, H.N. and Rezaei, S. Characterization
of silicon surface elastic constants based on di erent
interatomic potentials", Thin Solid Films, 626, pp.
104{109 (2017).
12. Blandre, E., Chaput, L., Merabia, S., et al. Modeling
the reduction of thermal conductivity in core/shell
and diameter-modulated silicon nanowires", Physical
Review B., 91(11), p. 115404 (2015).
13. Lee, J., Lee, W., Lim, J., et al. Thermal transport in
silicon nanowires at high temperature up to 700 K",
Nano Letters, 16(7), pp. 4133{4140 (2016).
H. Nejat Pishkenari and P. Delafrouz/Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 819{827 827
14. Soleimani, A., Araghi, H., Zabihi, Z., et al. A
comparative study of molecular dynamics simulation
methods for evaluation of the thermal conductivity
and phonon transport in Si nanowires", Computational
Materials Science, 142, pp. 346{354 (2018).
15. Zhang, T., Xiong, X., Liu, M., et al. Ultralow thermal
conductivity of silicon nanowire arrays by molecular
dynamics simulation", Materials Research Express,
4(2), p. 025029 (2017).
16. Pishkenari, H.N., Afsharmanesh, B., and Akbari, E.
Surface elasticity and size e ect on the vibrational
behavior of silicon nanoresonators", Current Applied
Physics, 15(11), pp. 1389{1396 (2015).
17. Goel, S., Faisal, N.H., Luo, X., et al. Nanoindentation
of polysilicon and single crystal silicon: Molecular
dynamics simulation and experimental validation",
Journal of Physics D: Applied Physics, 47(27), p.
275304 (2014).
18. Ansari, R., Mirnezhad, M., and Rouhi, H. Mechanical
properties of chiral silicon carbide nanotubes under hydrogen
adsorption: a molecular mechanics approach",
Nano, 9(4), p. 1450043 (2014).
19. Mei, J. and Ni, Y. The study of anisotropic behavior
of nano-adhesive contact by multiscale simulation",
Thin Solid Films, 566, pp. 45{53 (2014).
20. Gupta, A.K. and Harsha, S.P. Multiscale modeling
approach for estimation of pinhole defects in polymer
nanocomposites", Nano 10(2) pp. 1550030 (2015).
21. Bautista-Reyes, R., Soto-Figueroa, C., and Vicente,
L. Mesoscopic simulation of a micellar poly (Nisopropyl
acrylamide)-b-(polyethylene oxide) copolymer
system", Modelling and Simulation in Materials
Science and Engineering, 24(4), p. 045004 (2016).
22. Liu, X., Yang, Q.S., Liew, K.M., et al. Superstretchability
and stability of helical structures of
carbon nanotube/polymer composite bers: coarsegrained
molecular dynamics modeling and simulation",
Carbon, 115, pp. 220{228 (2017).
23. Li, S. and Urata, S. An atomistic-to-continuum
molecular dynamics: Theory, algorithm, and applications",
Computer Methods in Applied Mechanics and
Engineering, 306, pp. 452{478 (2016).
24. Cascella, M. and Dal Peraro, M. Challenges and
perspectives in biomolecular simulations: from the
atomistic picture to multiscale modeling", CHIMIA
International Journal for Chemistry, 63(1{2), pp. 14{
18 (2009).
25. Marrink, S.J., Risselada, H.J., Ye mov, S., et al.
The Martini force eld: coarse grained model for
biomolecular simulations", The Journal of Physical
Chemistry B, 111(27), pp. 7812{7824 (2007).
26. Delafrouz, P. and Pishkenari, H.N. Coarse-graining
models for molecular dynamics simulations of FCC
metals", Journal of Theoretical and Applied Mechanics,
56(3), pp. 601{614 (2018).
27. Dongare, A.M. Quasi-coarse-grained dynamics: modelling
of metallic materials at mesoscales", Philosophical
Magazine, 94(34), pp. 3877{3897 (2014).
28. Stillinger, F.H. and Weber, T.A. Computer simulation
of local order in condensed phases of silicon",
Physical Review B, 31(8), p. 5262 (1985).
29. Plimpton, S. Fast parallel algorithms for shortrange
molecular dynamics", Journal of Computational
Physics, 117, pp. 1{19 (1995).
30. Chavoshi, S.Z., Xu, S., and Luo, X. Dislocationmediated
plasticity in silicon during nanometric cutting:
A molecular dynamics simulation study", Materials
Science in Semiconductor Processing, 51, pp.
60{70 (2016).
31. Cowley, E.R. Lattice dynamics of silicon with empirical
many-body potentials", Physical Review Letters,
60(23), p. 2379 (1985).
32. Nose, S. A uni ed formulation of the constant temperature
molecular dynamics methods", The Journal
of Chemical Physics, 81(1), pp. 511{519 (1984).
33. Hoover, W.G. Canonical dynamics: equilibrium
phase-space distributions", Physical Review A, 31(3),
p. 1695 (1985).
34. Pishkenari, H.N., Afsharmanesh, B., and Tajaddodianfar,
F. Continuum models calibrated with atomistic
simulations for the transverse vibrations of silicon
nanowires", International Journal of Engineering Science,
100, pp. 8{24 (2016).